Hai xạ thủ cùng bắn vào bia. Kí hiệu \(A_k\) là biến cố: "Người thứ \(k\) bắn trúng", \(k = 1, 2\).
a) Hãy biểu diễn các biến cố sau qua các biến cố \(A_1 A_2\) :
\(A\): "Không ai bắn trúng";
\(B\): "Cả hai đểu bắn trúng";
\(C\): "Có đúng một người bắn trúng";
\(D\): "Có ít nhất một người bắn trúng".
b) Chứng tỏ rằng \(A\) = \(\overline{D}\); \(B\) và \(C\) xung khắc.
Sử dụng các khái niệm biến cố đối, biến cố xung khắc, các phép toán trên các biến cố.
Lời giải chi tiết
Phép thử \(T\) được xét là: "Hai xạ thủ cùng bắn vào bia".
Theo đề ra ta có \(\overline{A_{k}}\) = "Người thứ \(k\) không bắn trúng", \(k = 1, 2\). Từ đó ta có:
a) \(A\) = "Không ai bắn trúng" = "Người thứ nhất không bắn trúng và người thứ hai không bắn trúng". Suy ra
\(A\) = \(\overline{A_{1}}\) . \(\overline{A_{2}}\).
Tương tự, ta có \(B\) = "Cả hai đều bắn trúng" = \(A_{1}\) . \(A_{2}\).
Xét \(C\) = "Có đúng một người bắn trúng", ta có \(C\) là hợp của hai biến cố sau:
"Người thứ nhất bắn trúng và người thứ hai bắn trượt" =\( A_1\) . \(\overline{A_{2}}\).
"Người thứ nhất bắn trượt và người thứ hai bắn trúng" = \(\overline{A_{1}}\) .\( A_2\) .
Suy ra \(C = A_1\). \(\overline{A_{2}}\) ∪ \(\overline{A_{1}}\) . \(A_2\) .
Tương tự, ta có \(D = A_1 ∪ A_2\) .
b) Gọi \(\overline{D}\) là biến cố: " Cả hai người đều bắn trượt". Ta có
\(\overline{D}\) = \(\overline{A_{1}}\) . \(\overline{A_{2}}\) = \(A\).
Hiển nhiên \(B ∩ C =\phi \) nên suy ra \(B\) và \(C\) xung khắc với nhau.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK