Viết khai triển theo công thức nhị thức Niu - Tơn:
a) \({\left( {a{\rm{ }} + {\rm{ }}2b} \right)^5}\);
b) \({\left( {a{\rm{ }} - {\rm{ }}\sqrt 2 } \right)^6}\)
c) \({\left( {x - {1 \over x}} \right)^{13}}\)
Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \,\,\left( {k \in Z} \right)\).
Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.
Lời giải chi tiết
a) Theo dòng 5 của tam giác Pascal, ta có:
\({(a + 2b)^5} = {a^5} + 5{a^4}.2b + 10{a^3}.{(2b)^2} + 10{a^2}{(2b)^3}\)
\(+ 5a.{(2b)^4} + {(2b)^5}\)\(={a^5} + 10{a^4}b + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}\)
\(\begin{array}{l}
C2:\,\,\,{\left( {a + 2b} \right)^5} = \sum\limits_{k = 0}^5 {C_5^k{a^{5 - k}}{{\left( {2b} \right)}^k}} \\
= C_5^0{a^5} + C_5^1{a^4}{\left( {2b} \right)^1} + C_5^2{a^3}{\left( {2b} \right)^2}\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + C_5^3{a^2}{\left( {2b} \right)^3} + C_5^4{a^1}{\left( {2b} \right)^4} + C_5^5{\left( {2b} \right)^5}\\
= {a^5} + 10{a^4} + 40{a^3}{b^2} + 80{a^2}{b^3} + 80a{b^4} + 32{b^5}
\end{array}\)
b) Theo dòng 6 của tam giác Pascal, ta có:
\({\left( {a - \sqrt 2 } \right)^6} = {a^6} + 6{a^5}\left( { - \sqrt 2 } \right) + 15{a^4}{\left( { - \sqrt 2 } \right)^2} \)
\(+ 20{a^3}{\left( { - \sqrt 2 } \right)^3} + 15{a^{^2}}{\left( { - \sqrt 2 } \right)^4} + 6a{\left( { - \sqrt 2 } \right)^5}\)
\(+ {\left( { - \sqrt 2 } \right)^6}\)\(={a^6} - 6\sqrt 2 {a^5} + 30{a^4}- 40\sqrt 2 {a^3}\)
\(+ 60{a^2} - 24\sqrt 2 a + 8\)
\(\begin{array}{l}
C2:\,\,{\left( {a - \sqrt 2 } \right)^6} = \sum\limits_{k = 0}^6 {C_6^k{a^{6 - k}}{{\left( { - \sqrt 2 } \right)}^k}} \\
= C_6^0{a^6} + C_6^1{a^5}{\left( { - \sqrt 2 } \right)^1} + C_6^2{a^4}{\left( { - \sqrt 2 } \right)^2}\\ \;\;\;\;+ C_6^3{a^3}{\left( { - \sqrt 2 } \right)^3}+ C_6^4{a^2}{\left( { - \sqrt 2 } \right)^4} \\\;\;\;\;+ C_6^5{a^1}{\left( { - \sqrt 2 } \right)^5} + C_6^6{\left( { - \sqrt 2 } \right)^6}\\
= {a^6} - 6\sqrt 2 {a^5} + 30{a^4} - 40\sqrt 2 {a^3} + 60{a^2}\\\;\;\;\; - 24\sqrt 2 a + 8
\end{array}\)
c) Theo công thức nhị thức Niu – Tơn, ta có:
\({\left( {x - {1 \over x}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k{x^{13 - k}}{{\left( { - {1 \over x}} \right)}^k} }\)
\(=\sum\limits_{k = 0}^{13} {C_{13}^k{{( - 1)}^k}{x^{13 - 2k}}} \)
Nhận xét: Trong trường hợp số mũ \(n\) khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK