Bài 5 trang 118 SGK Hình học 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Một hình bình hành có hai cạnh nằm trên hai đường thẳng x + 3y - 6 = 0 và 2x - 5y - 1 = 0. Biết hình bình hành đó có tâm đối xứng là I(3, 5). Hãy viết phương trình hai cạnh còn lại của hình bình hành đó.

Hướng dẫn giải

 

Giả sử hình bình hành ABCD có tâm I

\(\eqalign{
& AB:\,\,x + 3y - 6 = 0 \cr
& AD:\,\,2x - 5y - 1 = 0 \cr} \) 

Tọa độ của A là nghiệm của hệ

\(\left\{ \matrix{
x + 3y - 6 = 0 \hfill \cr
2x - 5y - 1 = 0 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
x = 3\, \hfill \cr
y = 1 \hfill \cr} \right.\)

Vậy \(A(3 ; 1)\).

I là trung điểm của AC nên

\(\left\{ \matrix{
{x_I} = {1 \over 2}({x_A} + {x_C}) \hfill \cr
{y_I} = {1 \over 2}({y_A} + {y_C}) \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_C} = 2{x_I} - {x_A} = 3 \hfill \cr
{y_C} = 2{y_I} - {y_A} = 9 \hfill \cr} \right.\)

 Vậy \(C(3 ; 9)\).

BC là đường thẳng qua C và song song với AD nên BC có phương trình:

\(2(x - 3) - 5(y - 9) = 0\,\, \Leftrightarrow \,\,2x - 5y + 39 = 0\)

CD là đường thẳng qua C và song song với AB nên CD có phương trình:

\(1(x - 3) + 3(y - 9) = 0\,\, \Leftrightarrow \,\,x + 3y - 30 = 0\)

 Vậy hai cạnh còn lại của hình bình hành là

\(2x - 5y + 39 = 0\) và \(x + 3y - 30 = 0\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK