Cho \((E):{{{x^2}} \over 5} + {{{y^2}} \over 4} = 1\) và hypebol \((H):{{{x^2}} \over 5} - {{{y^2}} \over 4} = 1.\)
a) Tìm tọa độ các tiêu điểm của (E) và (H).
b) Vẽ phác elip (E) và hypebol (H) trong cùng một hệ trục tọa độ.
c) Tìm tọa độ các giao điểm của (E) và (H).
a) Với \((E):{{{x^2}} \over 5} + {{{y^2}} \over 4} = 1\) ta có \(a = \sqrt 5 \,,\,\,b = 2\,\,\, \Rightarrow \,c = \sqrt {{a^2} - {b^2}} = 1\)
Tọa độ các tiêu điểm của (E) là \({F_1}( - 1\,;\,0)\,,\,\,{F_2}(1\,;\,0)\)
Với (H) : \({{{x^2}} \over 5} - {{{y^2}} \over 4} = 1\) , ta có \(a = \sqrt 5 \,,\,b = 2\,,\,\,c = \sqrt {{a^2} + {b^2}} = 3\)
Tọa độ các tiêu điểm của (H) là \({F_1}( - 3\,;\,0)\,,\,\,{F_2}(3\,;\,0)\)
b) Vẽ (E) và (H).
c) Tọa độ giao điểm của (E) và (H) là nghiệm của hệ phương trình
\(\left\{ \matrix{
{{{x^2}} \over 5} + {{{y^2}} \over 4} = 1 \hfill \cr
{{{x^2}} \over 5} - {{{y^2}} \over 4} = 1 \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
{x^2} = 5 \hfill \cr
{y^2} = 0 \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
x = \pm \sqrt 5 \hfill \cr
y = 0 \hfill \cr} \right.\)
Vậy tọa đô giao điểm của (E) và (H) là \(\left( {\sqrt 5 \,;\,0} \right)\) và \(\left( -{\sqrt 5 \,;\,0} \right)\) .
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK