Cho đường thẳng \(d:x - y + 2 = 0\) và điểm A(2, 0)
a) Với điều kiện nào của x và y thì điểm M(x, y) thuộc nửa mặt phẳng có bờ d và chứa gốc tọa độ O? Chứng minh điểm A nằm trong nửa mặt phẳng đó.
b) Tìm điểm đối xứng với điểm O qua đường thẳng d.
c) Tìm điểm M trên d sao cho chu vi tam giác OMA nhỏ nhất.
a) Điểm M và O nằm cùng phía đối với d khi và chỉ khi
\((x - y + 2).(0 - 0 + 2) > 0\,\,\, \Leftrightarrow \,\,\,x - y + 2 > 0\)
Ta có : \({x_A} - {y_A} + 2 = 2 - 0 + 2 = 4 > 0\) , do đó A nằm trong nửa mặt phẳng có bờ là d và chứa O.
b) Gọi d’ là đường thẳng qua O và vuông góc với d thì phương trình tổng quát của d’ là \(d’: x+y=0\). Gọi H là hình chiếu của O lên d thì tọa độ H là nghiệm của hệ:
\(\left\{ \matrix{
x - y = - 2 \hfill \cr
x + y = 0 \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
x = - 1 \hfill \cr
y = 1 \hfill \cr} \right.\)
Vậy \(H(-1, 1)\)
Gọi O’ là điểm đối xứng của O qua d thì H là trung điểm của OO’ do đó
\(\left\{ \matrix{
{x_H} = {{{x_O} + {x_{O'}}} \over 2} \hfill \cr
{y_H} = {{{y_O} + {y_{O'}}} \over 2} \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ \matrix{
{x_{O'}} = 2{x_H} - {x_O} = - 2 \hfill \cr
{y_{O'}} = 2{y_H} - {y_O} = 2 \hfill \cr} \right.\)
Vậy \(O'(-2, 2)\)
c) OA không đổi nên chu vi tam giác AMO nhỏ nhất khi tổng MO+MA nhỏ nhất.
Ta có: \(MO = MO'\Rightarrow \,\,\,MO + MA = MO' + MA \ge \,AO'\)
\( \Rightarrow \,\,MO + MA\) nhỏ nhất khi A, M, O’ thẳng hàng , khi đó M là giao điểm của d với đường thẳng O’A.
Phương trình O’A :
\(\eqalign{
& {{x - {x_A}} \over {{x_{O'}} - {x_A}}} = {{y - {y_A}} \over {{y_{O'}} - {y_A}}} \cr
& {{x - 2} \over { - 2 - 2}} = {{y - 0} \over {2 - 0}}\,\,\,\,\, \Leftrightarrow \,\,\,x + 2y - 2 = 0 \cr} \)
Tọa độ M là nghiệm của hệ:
\(\left\{ \matrix{
x - y = - 2 \hfill \cr
x + 2y = 2 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\,\left\{ \matrix{
x = - {2 \over 3} \hfill \cr
y = {4 \over 3} \hfill \cr} \right.\,\,\)
Vậy \(M\left( { - {2 \over 3}\,;\,{4 \over 3}} \right)\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK