Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Xác định tọa độ giao điểm của parabol \(y = ax^2+ bx + c\) với trục tung. Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt và viết tọa độ của các giao điểm trong trường hợp đó.

Hướng dẫn giải

+) Phương trình trục tung: \(x=0.\)

+) Phương trình trục hoành: \(y=0.\)

+) Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt \(\Leftrightarrow \) phương trình hoành độ giao điểm có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0.\)

Lời giải chi tiết

Với \(x=0\) ta được \(y=c \Rightarrow \) Giao điểm của đồ thị hàm số với trục tung \(P(0; c).\)

Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là: \(a x^2+bx+c=0. \, \, \, (1)\)

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt \(\Leftrightarrow \) phương trình \((1)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\) \( \Leftrightarrow b^2-4ac  > 0.\)

Khi đó đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có tọa độ: \(A\left( {\frac{{ - b - \sqrt \Delta  }}{{2a}};\;0} \right) \) và \( B\left( {\frac{{ - b + \sqrt \Delta  }}{{2a}};\;0} \right).\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK