Từ điểm P bên ngoài đường tròn (O, kẻ hai tiếp tuyến PA và PB đến (O). Đường thẳng song song với PA kẻ từ B cắt (O) tại C, PC cắt đường tròn (O) tại điểm thứ hai là E. Đường BE cắt PA tại M.
a) Chứng minh: \(PM^2= BM.ME\)
b) Chứng minh rằng M là trung điểm của PA.
a) PA // BC \(\Rightarrow \widehat {{C_1}} = \widehat {{P_1}}\) ( so le trong)
\(\widehat {{C_1}} = \widehat {MBP}\) ( góc nội tiếp bằng góc giữa tiếp tuyến và một dây cùng chắn cung BE)
Do đó \(∆PME\) và \(∆BMP\) đồng dạng (g.g)
\(\Rightarrow\dfrac{{PM}}{{BM}} = \dfrac{{ME} }{ {PM}}\)
\(\Rightarrow PM^2= BM.ME\) (1)
b) Tương tự ta có hai tam giác AME và BMA đồng dạng (g.g) vì có :
\(\widehat {MAE} = \widehat {{B_1}}\) và \(\widehat {AMB}\) chung
\( \Rightarrow \dfrac{{AM}}{{BM}} =\dfrac {{ME}}{{AM}}\)
\(\Rightarrow AM^2 = BM.ME\) (2)
Từ (1) và (2) \( \Rightarrow P{M^2} = A{M^2}\)
\( \Rightarrow PM = AM\) hay M là trung điểm của PA.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK