Từ một điểm P ở ngoài đường tròn (O), kẻ hai tiếp tuyến PA, PB đến đường tròn. Trên cung nhỏ AB lấy điểm C bất kì, kẻ các đường vuông góc CD, CE, CF lần lượt xuống các đường thẳng AB, BP, PA. Chứng minh rằng : \(\widehat {DCF} = \widehat {DCE}\) và \(\widehat {DFC} = \widehat {CDE}\).
Ta có E và D nằm trên đường tròn đường kính BC, F và D nằm trên đường tròn đường kính AC.
Do đó \(\widehat {DCF} + \widehat {PAB} = \widehat {DCE} + \widehat {PBA} = 2v\)
Trong đó \(\widehat {PAB} = \widehat {PBA}\) ( góc giữa tiếp tuyến và một dây cùng chắn cung nhỏ AB).
Vậy \(\widehat {DCF} = \widehat {DCE}\).
Trong đường tròn (O), ta có : \(\widehat {CBE} = \widehat {CAB}\) (góc giữa tiếp tuyến và một dây và góc nội tiếp cùng chắn cung CB).
Trong đường tròn đường kính BC, ta có : \(\widehat {CBE} = \widehat {CDE}\) ( góc nội tiếp cùng chắn cung CE).
Trong đường tròn đường kính CA, ta có : \(\widehat {CAB} = \widehat {DFC}\) ( góc nội tiếp cùng chắn cung CD).
Vậy \(\widehat {DFC} = \widehat {CDE}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK