Cho ∆ABC đều. Trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ nửa đường tròn đường kính BC. Lấy D, E trên nửa đường tròn sao cho \(\overparen{ BD} = \overparen{ DE} = \overparen{ EC}\). Gọi I, J lần lượt là giao điểm của AD, AE với BC. Chứng minh rằng: \(BI = IJ = JC.\)
Ta có: \(\overparen{ BD} = \overparen{ DE} = \overparen{EC}\) (gt)
\(\Rightarrow sđ\overparen{BD} = sđ\overparen{DE} = sđ\overparen{ EC} =60^o\)
Do đó ∆BOD đều ( cân có một góc 60º)
\( \Rightarrow \widehat {OBD} = 60^\circ \)
Xét \(∆BID\) và \(∆CIA\) có :
\(\widehat {BID} = \widehat {CIA}\) ( đối đỉnh)
\(\widehat {OBD} = \widehat {ICA} = 60^\circ \)
Vậy ∆BID đồng dạng với ∆CIA (g.g)
\( \Rightarrow \dfrac{{BI} }{ {CI}} = \dfrac{{BD} }{ {CA}} =\dfrac {{OB} }{ {BC}} = \dfrac{1 }{ 2}\) ( vì \(BD = OB\) và \(CA = BC\))
\( \Rightarrow BI =\dfrac {1 }{ 3}BC\).
Tương tự, ta chứng minh được\(CJ =\dfrac {1 }{ 3}BC.\)
Do đó: \(BI = IJ = JC.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK