Bài 1: Không giải phương trình, chứng tỏ phương trình \(2{x^2} - 3x - 6 = 0\) có hai nghiệm phân biệt \(x_1; x_2\). Tính \(x_1^3 + x_2^3.\)
Bài 2: Tìm m để phương trình \({x^2} - 2x + m = 0\) có hai nghiệm phân biệt và cùng dương.
Bài 3: Tìm m để phương trình \({x^2} + 2x + m = 0\) có hai nghiệm \(x_1; x_2\) thỏa mãn \(3{x_1} + 2{x_2} = 1.\)
Bài 1: Ta có các hệ số : \(a = 2; b = − 3; c = − 6\). Vì \(ac = 2.\left( { - 6} \right) < 0 \Rightarrow \Delta = {b^2} - 4ac > 0\) nên phương trình có hai nghiệm phân biệt \(x_1; x_2\). Theo định lí Vi-ét, ta có :
\({x_1} + {x_2} = {3 \over 2};\,\,\,\,\,{x_1}{x_2} = - 3\)
Vậy \(x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} \)\(\;- 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {{135} \over 8}.\)
Bài 2: Phương trình có hai nghiệm phân biệt và cùng dương
\( \Leftrightarrow \left\{ \matrix{ \Delta ' > 0 \hfill \cr P > 0 \hfill \cr S > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 1 - m > 0 \hfill \cr m > 0 \hfill \cr 2 > 0 \hfill \cr} \right. \)\(\;\Leftrightarrow 0 < m < 1.\)
Bài 3: Phương trình có nghiệm khi và chỉ khi \(\Delta ' \ge 0 \Leftrightarrow 1 - m \ge 0 \Leftrightarrow m \le 1\). Theo định lí Vi-ét, ta có : \({x_1} + {x_2} = - 2\) và \(x_1.x_2=m\)
Xét hệ : \(\left\{ \matrix{ {x_1} + {x_2} = - 2 \hfill \cr 3{x_1} + 2{x_2} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {x_1} = 5 \hfill \cr {x_2} = - 7 \hfill \cr} \right.\)
Vậy \(x_1. x_2=m\)\(\; \Leftrightarrow 5.( - 7) = m \Leftrightarrow m = - 35\) ( thỏa mãn điều kiện \(m ≤ 1\)).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK