Bài 1: Cho phương trình \({x^2} + \left( {1 + \sqrt 3 } \right)x + \sqrt 3 = 0\). Số nào sau đây là nghiệm cảu phương trình: \( x = 1; x = − 1;\) \(x = \sqrt 3 \); \(x = - \sqrt 3 .\)
Bài 2: Giải phương trình : \({x^2} - 5x + 7 = 0.\)
Bài 3: Tìm tọa độ giao điểm của đồ thị hai hàm số sau :
\(y = 4{x^2}\) và \(y = 4x + 3.\)
Bài 1: Thay các giá trị \(x = 1; x = − 1\); \(x = \sqrt 3 \); \(x = - \sqrt 3 \) vào phương trình đã cho, ta nhận thấy
\(x = − 1\) và \(x = - \sqrt 3 \)là nghiệm của phương trình. ( Chẳng hạn : với \(x = - \sqrt 3 \), ta có : \({\left( { - \sqrt 3 } \right)^2} + \left( {1 + \sqrt 3 } \right)\left( { - \sqrt 3 } \right) + \sqrt 3 \)\( = 0\)
\( \Leftrightarrow 3 - \sqrt 3 - 3 + \sqrt 3 = 0\) ( luôn đúng). Vậy \(x = - \sqrt 3 \) là một nghiệm)
Bài 2: \({x^2} - 5x + 7 = 0\)
\(\Leftrightarrow {x^2} - 2.{5 \over 4}x + {{25} \over 4} - {{25} \over 4} + 7 = 0\)
\( \Leftrightarrow {\left( {x - {5 \over 2}} \right)^2} + {3 \over 4} = 0\)
Phương trình vô nghiệm vì \({\left( {x - {5 \over 2}} \right)^2} \ge 0\), với mọi \(x \in \mathbb R\) nên \({\left( {x - {5 \over 2}} \right)^2} + {3 \over 4} > 0\), với \(x \in \mathbb R\).
Bài 3: Phương trình hoành độ giao điểm của hai đồ thị :
\(4{x^2} = 4x + 3 \Leftrightarrow 4{x^2} - 4x = 3\)
\(\Leftrightarrow 4{x^2} - 4x + 1 = 3 + 1\)
\( \Leftrightarrow {\left( {2x - 1} \right)^2} = 4 \Leftrightarrow \left| {2x - 1} \right| = 2\)
\( \Leftrightarrow \left[ \matrix{ 2x - 1 = 2 \hfill \cr 2x - 1 = - 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ x = {3 \over 2} \hfill \cr x = - {1 \over 2} \hfill \cr} \right.\)
Vậy tọa độ giao điểm là : \(\left( {{3 \over 2};9} \right)\) và \(\left( { - {1 \over 2};1} \right).\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK