Cho đường tròn tâm \(O\) bán kính \(5cm\), dây \(AB\) bằng \(8cm\).
a) Tính khoảng cách từ tâm \(O\) đến dây \(AB\).
b) Gọi \(I\) là điểm thuộc dây \(AB\) sao cho \(AI=1cm\). Kẻ dây \(CD\) đi qua \(I\) và vuông góc với \(AB\). Chứng minh rằng \(CD=AB\).
a) +) Sử dụng tính chất: trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
+) Sử dụng định lí Pytago: \(\Delta{ABC}\), vuông tại \(A\) thì \(BC^2=AC^2+AB^2\).
b) Sử dụng tính chất: Trong một đường tròn, hai dây cách đều nhau thì bằng nhau.
Lời giải chi tiết
a) Kẻ \(OH\perp AB\). Suy ra \(H\) là trung điểm của dây \(AB\). (Theo định lí 2 - trang 103)
\(\Rightarrow HA=HB=\dfrac{AB}{2}=\dfrac{8}{2}=4cm.\)
Xét tam giác \(HOB\) vuông tại \(H\), theo định lí Pytago, ta có:
\(OB^2=OH^2+HB^2 \Leftrightarrow OH^{2}=OB^{2}-HB^{2}\)
\(\Leftrightarrow OH^2=5^{2}-4^{2}=25-16=9\Rightarrow OH=3(cm)\).
Vậy khoảng cách từ tâm \(O\) đến dây \(AB\) là \(3cm\).
b) Vẽ \(OK\perp CD\).
Tứ giác \(KOHI\) có ba góc vuông nên là hình chữ nhật, suy ra \(OK=HI\).
Ta có \(HI=AH-AI=4-1=3cm\), suy ra \(OK=3cm.\)
Vậy \(OH=OK = 3cm.\)
Hai dây \(AB\) và \(CD\) cách đều tâm nên chúng bằng nhau.
Do đó \(AB = CD.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK