Bài 14 trang 77 SGK Toán 9 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Sử dụng định nghĩa tỉ số các lượng giác của một góc nhọn để chứng minh rằng: Với góc nhọn \(\alpha\) tùy ý, ta có:

a) \(\tan \alpha =\dfrac{\sin\alpha }{\cos \alpha};\)   \(\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha };\)         \(\tan \alpha . \cot \alpha =1\);

b) \(\sin \alpha ^{2}+\cos \alpha ^{2}=1\)

Gợi ý: Sử dụng định lý Py-ta-go.

Hướng dẫn giải

+) Áp dụng công thức tính tỉ số lượng giác của một góc nhọn:

\(\sin \alpha =\dfrac{cạnh\ đối}{cạnh\ huyền};\)         \(\cos \alpha = \dfrac{cạnh\ kề}{cạnh\ huyền}\);

\(\tan \alpha = \dfrac{cạnh\ đối}{cạnh\ kề};\)             \(\cot \alpha =\dfrac{cạnh\ kề}{cạnh\ đối}.\)

+) Sử dụng định lí Pytago trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\), khi đó: 

            \(BC^2=AB^2+AC^2\)

Lời giải chi tiết

Xét \(\Delta{ABC}\) vuông tại \(A\), có \(\widehat{ACB}=\alpha\).

a)  \(\Delta{ABC}\), vuông tại \(A\), theo định nghĩa tỷ số lượng giác của góc nhọn, ta có:

               \(\sin \alpha = \dfrac{AB}{BC}\),  \(\cos \alpha =\dfrac{AC}{BC}\)

              \(\tan \alpha =\dfrac{AB}{AC}\),    \(\cot \alpha =\dfrac{AC}{AB}\).

* Chứng minh \(\tan \alpha = \dfrac{\sin \alpha}{\cos \alpha}\).

   \(VP=\dfrac{\sin \alpha}{\cos \alpha}=\dfrac{AB}{BC} : \dfrac{AC}{BC}=\dfrac{AB}{BC}.\dfrac{BC}{AC}\)

                           \(=\dfrac{AB.BC}{BC.AC}=\dfrac{AB}{AC}= \tan \alpha =VT\)

(Trong đó VT là vế trái của đẳng thức; VP là vế phải của đẳng thức)

* Chứng minh \( \cot \alpha =\dfrac{\cos \alpha}{\sin \alpha}\).

   \(VP=\dfrac{\cos \alpha}{\sin \alpha}=\dfrac{AC}{BC} : \dfrac{AB}{BC}=\dfrac{AC}{BC}. \dfrac{BC}{AB}\)

                            \(=\dfrac{AC.BC}{BC.AB}=\dfrac{AC}{AB}=\cot \alpha=VT\)

* Chứng minh \(\tan \alpha . \cot \alpha =1\).

Ta có: \(VT=\tan \alpha . \cot \alpha \)

                   \(= \dfrac{AB}{AC}.\dfrac{AC}{AB}=\dfrac{AB.AC}{AC.AB}=1=VP\)

b) \(\Delta{ABC}\) vuông tại \(A\), áp dụng định lí Pytago, ta được:

\(BC^2=AC^2+AB^2\)   (1)

Ta có:

\(VT=\sin ^{2} \alpha +\cos^{2}\alpha \)

\(\;\;\;={\left(\dfrac{AB}{BC} \right)^2}+ {\left(\dfrac{AC}{AB} \right)^2}= \dfrac{AB^{2}}{BC^{2}}+\dfrac{AC^{2}}{BC^{2}}\)

\(\;\;\;=\dfrac{AB^2+AC^2}{BC^2}\)   (2)

Thay (1) vào (2) ta được: 

\(VT = {{A{B^2} + A{C^2}} \over {B{C^2}}} = {{B{C^2}} \over {B{C^2}}} = 1 = VP\)  (điều phải chứng minh)

Nhận xét: Ba hệ thức:

\(\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }\);  \(\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }\) và  \(\sin^{2} \alpha +\cos^{2}  \alpha =1\) là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK