Bài 1. Tìm hệ số góc của đường thẳng qua \(O\) và điểm \(A(3; 2)\).
Bài 2. Tính góc \(α\) tạo bởi đường thẳng \(y = \sqrt 3 x + 3\) và trục \(Ox\).
Bài 3. Viết phương trình đường thẳng có hệ số góc bằng 2 và cắt trục hoành tại điểm có hoành độ bằng 3.
Bài 1. phương trình đường thẳng (d) có dạng: \(y = ax + b ( a ≠ 0)\)
\(O ∈ (d) ⇒ b = 0\). Khi đó: \(y = ax\).
Lại có: \(A ∈ (d) ⇒ 2 = 3a \Rightarrow a = {2 \over 3}\)
Bài 2. Đường thẳng \(y = \sqrt 3 x + 3\) đi qua hai điểm \(A(0; 3)\), \(B\left( { - \sqrt 3 ;0} \right)\)
Tam giác vuông OAB, ta có:
\(\eqalign{ & OA = 3,OB = \left| { - \sqrt 3 } \right| = \sqrt 3 \cr & \Rightarrow \tan \alpha = {{OA} \over {OB}} = {3 \over {\sqrt 3 }} = \sqrt 3 \cr& \Rightarrow \alpha = {60^0} \cr} \)
Bài 3. Phương trình đường thẳng (d) có dạng: \(y = 2x + b\) ( vì hệ số góc \(a = 2\)). Tọa độ giao điểm của (d) và \(Ox\) là \(A(3; 0)\).
\(A \in \left( d \right) \Rightarrow 0 = 3.2 + b \Rightarrow b = - 6\)
Vậy: \(y = 2x - 6\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK