Bài 1. Cho hàm số \(y = ax + 2.\) Tìm hệ số a, biết khi \(x = 1\) thì \(y = 3\).
Bài 2. Cho hàm số \(y = \left( {m - 1} \right)x + 2.\) Tìm m để hàm số đồng biến; nghịch biến trên \(\mathbb R\).
Bài 3. Chứng minh rằng : hàm số \(y = f\left( x \right) = \left( {3 - \sqrt 2 } \right)x + 2\) đồng biến trên \(\mathbb R\).
Bài 4. Cho hàm số \(y = f\left( x \right) = \left( {2 - \sqrt 2 } \right)x + 1\)
So sánh : \(f\left( {1 + \sqrt 2 } \right)\) và \(f\left( {\sqrt 2 + \sqrt 3 } \right)\)
Bài 1. Theo giả thiết, ta có: \(3 = a.1 + 2 ⇒ a = 1.\)
Bài 2.
– Hàm số đồng biến trên \(\mathbb R\) \(⇔ m – 1 > 0 ⇔ m > 1\)
- Hàm số nghịch biến trên \(\mathbb R\) \(⇔ m – 1 < 0 ⇔ m < 1\)
Bài 3. Với \({x_1},\,{x_2}\) bất kì thuộc \(\mathbb R\) và \({x_1}<{x_2}\). Ta có:
\(\eqalign{ & f\left( {{x_1}} \right) = \left( {3 - \sqrt 2 } \right){x_1} + 2 \cr & f\left( {{x_2}} \right) = \left( {3 - \sqrt 2 } \right){x_2} + 2 \cr} \)
\(\Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) \)\(\,= \left( {3 - \sqrt 2 } \right)\left( {{x_1} - {x_2}} \right)\)
Vì \({x_1}<{x_2}\)
\(\eqalign{ & \Rightarrow {x_1} - {x_2} < 0;3 - \sqrt 2 > 0 \cr & \Rightarrow \left( {3 - \sqrt 2 } \right)\left( {{x_1} - {x_2}} \right) < 0\cr& \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right) \cr} \)
Vậy hàm số đã cho đồng biến trên \(\mathbb R\).
Bài 4. Hàm số đã cho có hệ số \(a = 2 - \sqrt 2 > 0\) nên hàm số đồng biến trên \(\mathbb R\).
Lại có: \(1 + \sqrt 2 < \sqrt 2 + \sqrt 3 \) \(\Rightarrow f\left( {1 + \sqrt 2 } \right) < f\left( {\sqrt 2 + \sqrt 3 } \right)\)
Chú ý: Có thể tính \(f\left( {1 + \sqrt 2 } \right)\) và \(f\left( {\sqrt 2 + \sqrt 3 } \right)\) và so sánh hai số.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK