Trang chủ Lớp 8 Toán Lớp 8 SGK Cũ Ôn tập chương I: Phép nhân và phép chia các đa thức Đề kiểm tra 45 phút ( 1 tiết) - Đề số 4 - Chương 1 - Đại số 8

Đề kiểm tra 45 phút ( 1 tiết) - Đề số 4 - Chương 1 - Đại số 8

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 1. Rút gọn:

a) \(A = \left( {x - 3} \right)\left( {x + 2} \right) - \left( {2{x^3} - 2{x^2} - 10x} \right):\left( {2x} \right).\)

b) \(B = \left( { - 4{x^3}{y^3} + {x^3}{y^4}} \right):\left( {2x{y^2}} \right) - xy.\left( {2x - xy} \right).\)

Bài 2. Phân tích các đa thức sau thành nhân tử:

a) \(2{x^2} - 12x + 18 + 2xy - 6y\)

b) \({x^2} + 4x - 4{y^2} + 8y.\)

Bài 3.

a) Tìm x, biết: \(5{x^3} - 3{x^2} + 10x - 6 = 0.\)

b) Tìm x, y biết: \({x^2} + {y^2} - 2x + 4y + 5 = 0.\)

Bài 4. Tìm giá trị nhỏ nhất của biểu thức : \(P = {x^2} + {y^2} - 2x + 6y + 12.\)

Hướng dẫn giải

Bài 1.

a) \(A = \left( {{x^2} + 2x - 3x - 6} \right) - \left( {{x^2} - x - 5} \right)\)

\(= {x^2} - x - 6 - {x^2} + x + 5 =  - 1.\)

b) \(B = \left( { - 2{x^2}y + {1 \over 2}{x^2}{y^2}} \right) - 2{x^2}y + {x^2}{y^2} \)

\(=  - 4{x^2}y + {3 \over 2}{x^2}{y^2}.\)

Bài 2.

a) \(2{x^2} - 12x + 18 + 2xy - 6y\)

\(= 2\left( {{x^2} - 6x + 9} \right) + 2y\left( {x - 3} \right)\)

\(=2{\left( {x - 3} \right)^2} + 2y\left( {x - 3} \right) \)

\(= 2\left( {x - 3} \right)\left( {x - 3 + y} \right).\)

b) \({x^2} + 4x - 4{y^2} + 8y \)

\(= \left( {{x^2} - 4{y^2}} \right) + \left( {4y + 8y} \right)\)

\(= \left( {x - 2y} \right)\left( {x + 2y} \right) + 4\left( {x + 2y} \right)\)

\( = \left( {x + 2y} \right)\left( {x - 2y + 4} \right).\)

Bài 3.

a) Ta có :

\(5{x^3} - 3{x^2} + 10x - 6 \)

\(= \left( {5{x^3} + 10x} \right) + \left( { - 3{x^2} - 6} \right)\)

\(=5x\left( {{x^2} + 2} \right) - 3\left( {{x^2} + 2} \right) \)

\(= \left( {{x^2} + 2} \right)\left( {5x - 3} \right)\)

Vậy \(\left( {{x^2} + 2} \right)\left( {5x - 3} \right) = 0 \Rightarrow 5x - 3 = 0\) (vì \({x^2} + 2 > 0,\) với mọi x)

\( \Rightarrow x = {3 \over 5}.\)

b) Ta có :

\({x^2} + {y^2} - 2x + 4y + 5\)

\(= \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} + 4y + 4} \right)\)

\( = {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2}\)

Vậy \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 0 \)

\(\Rightarrow x - 1 = 0\) và \(y + 2 = 0\)

\( \Rightarrow x = 1\) và \(y =  - 2.\)

Chú ý : Xét bài toán : Tìm x, y biết : \(xy + 1 - x - y = 0\)

Ta có : \(xy + 1 - x - y = xy - x + 1 - y \)\(\;= x\left( {y - 1} \right) - \left( {y - 1} \right) \)\(\;= \left( {y - 1} \right)\left( {x - 1} \right).\)

Vậy \(\left( {y - 1} \right)\left( {x - 1} \right) = 0\)

\(\Rightarrow y - 1 = 0\) hoặc \(x - 1 = 0\)

\( \Rightarrow x = 1\) hoặc \(y = 1.\)

Vậy \(x = 1\) và y tùy ý hoặc \(y = 1\) và x tùy ý.

Bạn cần phân biệt hai từ  (và) ; (hoặc ) trong hai bài toán trên

Bài 4. Ta có :

\(P = {\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + 2 \ge 2\) vì \({\left( {x - 1} \right)^2} \ge 0;{\left( {y + 3} \right)^2} \ge 0,\) với mọi x, y.

Vậy giá trị nhỏ nhất của P bằng 2.

Dấu   xảy ra khi \(x - 1 = 0\) và \(y + 3 = 0 \Rightarrow x = 1\) và \(y =  - 3.\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK