Bài 52 trang 101 SGK Toán 7 tập 1

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Xem hình 36, hãy điền vào chỗ trống(...) để chứng minh định lí: " Hai góc đối đỉnh thì bằng nhau".

GT: ...

KL: ...

       Các định lí

  Căn cứ khẳng định

1

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}=180^0\)

 Vì …

2

   \(\widehat{O_{3}}\) + \(\widehat{O_{2}}\) = ...

 Vì …

3

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}\) =  \(\widehat{O_{3}}\) + \(\widehat{O_{2}}\) 

 Căn cứ vào …

4

 \(\widehat{O_{1}}\) = \(\widehat{O_{3}}\)

Căn cứ vào …

       Các định lí

  Căn cứ khẳng định

1

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}=180^0\)

 Vì …

2

   \(\widehat{O_{3}}\) + \(\widehat{O_{2}}\) = ...

 Vì …

3

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}\) =  \(\widehat{O_{3}}\) + \(\widehat{O_{2}}\) 

 Căn cứ vào …

4

 \(\widehat{O_{1}}\) = \(\widehat{O_{3}}\)

Căn cứ vào …

Tương tự chứng minh \(\widehat{O_{2}}\) = \(\widehat{O_{4}}\)

Hướng dẫn giải

Hai góc đối đỉnh thì bằng nhau.

Hai góc kề bù có tổng bằng \(180^0.\)

Lời giải chi tiết

Giả thiết: \(\widehat{O_{1}}\) đối đỉnh \(\widehat{O_{3}}\).

Kết luận: \(\widehat{O_{1}}\) = \(\widehat{O_{3}}\)

        Các định lí

  Căn cứ khẳng định

1

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}=180^0\)

 Vì \(\widehat{O_{1}}\) và \(\widehat{O_{2}}\) kề bù

2

  \(\widehat{O_{3}}\) + \(\widehat{O_{2}}=180^0\) 

 Vì \(\widehat{O_{2}}\) và \(\widehat{O_{2}}\) kề bù

3

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}\) =  \(\widehat{O_{3}}\) + \(\widehat{O_{2}}\) 

 Căn cứ vào 1 và 2

4

 \(\widehat{O_{1}}\) = \(\widehat{O_{3}}\)

 Căn cứ vào 3

        Các định lí

  Căn cứ khẳng định

1

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}=180^0\)

 Vì \(\widehat{O_{1}}\) và \(\widehat{O_{2}}\) kề bù

2

  \(\widehat{O_{3}}\) + \(\widehat{O_{2}}=180^0\) 

 Vì \(\widehat{O_{2}}\) và \(\widehat{O_{2}}\) kề bù

3

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}\) =  \(\widehat{O_{3}}\) + \(\widehat{O_{2}}\) 

 Căn cứ vào 1 và 2

4

 \(\widehat{O_{1}}\) = \(\widehat{O_{3}}\)

 Căn cứ vào 3

Chứng minh \(\widehat{O_{2}}\) = \(\widehat{O_{4}}\)

      Các định lí

   Căn cứ khẳng định

1

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}=180^0\)

 Vì \(\widehat{O_{1}}\) và \(\widehat{O_{2}}\) kề bù

2

  \(\widehat{O_{1}}\) + \(\widehat{O_{4}}=180^0\)

 Vì \(\widehat{O_{1}}\) và \(\widehat{O_{4}}\) kề bù

3

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}\) =  \(\widehat{O_{1}}\) + \(\widehat{O_{4}}\) 

 Căn cứ vào 1 và 2

4

 \(\widehat{O_{2}}\) = \(\widehat{O_{4}}\)

 Căn cứ vào 3

      Các định lí

   Căn cứ khẳng định

1

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}=180^0\)

 Vì \(\widehat{O_{1}}\) và \(\widehat{O_{2}}\) kề bù

2

  \(\widehat{O_{1}}\) + \(\widehat{O_{4}}=180^0\)

 Vì \(\widehat{O_{1}}\) và \(\widehat{O_{4}}\) kề bù

3

 \(\widehat{O_{1}}\) + \(\widehat{O_{2}}\) =  \(\widehat{O_{1}}\) + \(\widehat{O_{4}}\) 

 Căn cứ vào 1 và 2

4

 \(\widehat{O_{2}}\) = \(\widehat{O_{4}}\)

 Căn cứ vào 3

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK