Thay chữ số vào dấu \(*\) để được số nguyên tố: \(\overline{5*}\); \(\overline{9*}\).
Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
Lời giải chi tiết
\(\overline{5*}\)
\(*\in \left\{0,1,2,3,4,5,6,7,8,9\right\}\)
Do đó ta xét \(*\) với từng giá trị
+) Nếu \(*\in\left\{0,2,4,6,8\right\}\) thì \(\overline{5*}\) chia hết cho \(2\) do đó các trương hợp này không thỏa mãn.
+) Nếu \(*=5\) thì \(55\) chia hết cho \(5\) nên trường hợp này không thỏa mãn.
+) Nếu \(*=1\) thì \(51\) có tổng các chữ số là \(5+1=6\) chia hết cho \(3\) do đó \(51\) chia hết cho \(3\), trường hợp này loại
+) Nếu \(*=3\) thì \(53\) là số nguyên tố
+) Nếu \(*=7\) thì \(57\) có tổng các chữ số là \(5+7=12\) chia hết cho \(3\) do đó \(57\) chia hết cho \(3\), trường hợp này loại.
+) Nếu \(*=9\) thì \(59\) là số nguyên tố.
Vậy * = {3; 9}
\(\overline{9*}\)
Tương tự ta xét như trên và tìm được số \(97\) là số nguyên tố.
+) Nếu \(*\in\left\{0,2,4,6,8\right\}\) thì \(\overline{9*}\) chia hết cho \(2\) do đó các trương hợp này không thỏa mãn.
+) Nếu \(*=5\) thì \(95\) chia hết cho \(5\) nên trường hợp này không thỏa mãn.
+) Nếu \(*=1\) thì \(91\) chia hết cho \(7\) do đó trường hợp này loại.
+) Nếu \(*=3\) thì \(93\) có tổng các chữ số là \(9+3=12\) nên chia hết cho 3 do đó \(93\) là hợp số, do đó trường hợp này loại.
+) Nếu \(*=7\) thì \(97\) là một số nguyên tố.
+) Nếu \(*=9\) thì \(99\) là một hợp số vì cỏ tổng các chữ số là: \(9+9=18\) chia hết cho \(3\) và \(9\). Do đó trường hợp này loại.
Vậy * = 7
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK