Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.
a) \(\forall n \in N: n\) chia hết cho n;
b) \(\exists x \in Q: x^2=2\);
c) \(\forall x \in R: x< x+1\);
d) \(\exists x \in R: 3x=x^2+1\);
Câu a:
Mệnh đề phủ định của mệnh đề thứ nhất là: "\(\exists n \in \mathbb{N} :n\) không chia hết cho n". Đây là mệnh đề sai, vì nếu n = 0 thì phép chia 0:0 tuy là không xác định nhưng có thể xem: 0:0=1
Câu b:
Mệnh đề phủ định của mệnh đề thứ hai là: "\(\forall x \in \mathbb{Q} :x^2\neq 2\)" Đây là mệnh đề đúng và là một định lý đã được chứng minh.
Câu c:
Mệnh đề phủ định của mệnh đề thứ ba là: \(\exists x \in \mathbb{R} :x\geq x+1\)
Đây là mệnh đề sai, vì bất phương trình: \(x\geq x+1\Leftrightarrow 0\geq 1\) vô nghiệm.
Câu d:
Mệnh đề phủ định của mệnh đề thứ tư là: \(\forall x \in \mathbb{R} :3x \neq x^2+1\)
Đây là mệnh đề sai, chẳng hạn với:
\(x=\frac{3+\sqrt{5}}{2}\) thì
\(3\left (\frac{3+\sqrt{5}}{2} \right )=\left (\frac{3+\sqrt{5}}{2} \right )^2+1\) là đúng.
-- Mod Toán 10
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK