Giải Toán 10 trang 46, 47 Kết nối tri thức với cuộc sống - Tập 2

Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ

Giải SGK Toán 10 trang 46 - Tập 2 sách Kết nối tri thức với cuộc sống

Giải Toán lớp 10 trang 46, 47 tập 2 Kết nối tri thức với cuộc sống giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi bài tập trong SGK bài 21 Đường tròn trong mặt phẳng tọa độ thuộc Chương 7: Phương pháp tọa độ trong mặt phẳng.

Toán 10 Kết nối tri thức trang 46, 47 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán lớp 10. Giải Toán lớp 10 trang 46, 47 Kết nối tri thức sẽ là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn. Vậy sau đây là trọn bộ bài giải Toán 10 bài 21: Đường tròn trong mặt phẳng tọa độ mời các bạn cùng theo dõi.

Trả lời câu hỏi Hoạt động Toán 10 Bài 21

Hoạt động 1

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C), tâm I(a; b), bán kính R. Khi đó, một điểm M(x; y) thuộc đường tròn (C) khi và chỉ khi tọa độ của nó thỏa mãn điều kiện đại số nào?

Hướng dẫn giải:

Điểm M(x; y) thuộc đường tròn (C) khi và chỉ khi khoảng cách IM = R.

Hay: \sqrt{(x-a)^{2}+(y-b)^{2}}=R

Hoạt động 2

Cho đường tròn (C): (x - 1)2 + (y - 2)2 = 25 và điểm M(4; -2).

a. Chứng minh điểm M(4; -2) thuộc đường tròn (C).

b. Xác định tâm và bán kính của (C).

c. Gọi \Delta là tiếp tuyến của (C) tại M. Hãy chỉ ra một vecto pháp tuyến của đường thẳng \Delta. Từ đó, viết phương trình đường thẳng \Delta.

Hướng dẫn giải:

a. Thay tọa độ điểm M vào phương trình đường tròn ta có:

(4 - 1)2 + (-2 - 2)2 = 25

Vậy M thuộc đường tròn (C).

b. Đường tròn (C) có tâm I(1; 2) và bán kính R = 5.

c. Đường thẳng \Delta có vecto pháp tuyến là \overrightarrow{IM}(3; -4) do IM vuông góc với đường thẳng \Delta (tính chất đường tiếp tuyến của đường tròn).

phương trình tông quát của đường thẳng \Delta là: 3.(x - 4) - 4.(y +2) = 0, hay 3x - 4 y - 20 = 0.

Giải Toán 10 trang 46, 47 Kết nối tri thức Tập 2

Bài 7.13 trang 46

Tìm tâm và tính bán kính của đường tròn: (x + 3)2 + (y - 3)2 = 36

Gợi ý đáp án

Đường tròn có tâm I(-3; 3) và bán kính R = \sqrt{36}=6.

Bài 7.14 trang 46

Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng.

a. x2 + y2 + xy + 4x - 2 = 0

b. x2 + y2 - 2y - 4x + 5 = 0

c. x2 + y2 + 6x - 8y + 1 = 0

Gợi ý đáp án

a. x2 + y2 + xy + 4x - 2 = 0 không phải là phương trình đường tròn do không đúng với dạng tổng quát của phương trình đường tròn.

b. x2 + y2 - 2y - 4x + 5 = 0

Ta có: a = 1, b = 2, c = 5

Xét: a2 + b2 - c = 0

⇒ Phương trình trên không là phương trình đường tròn.

c. x2 + y2 + 6x - 8y + 1 =0

Ta có: a = -3, b = 4, c = 1

Xét: a2 + b2 - c = 24 > 0.

⇒ Phương trình trên là phương trình đường tròn, có tâm I(-3; 4) và bán kính R = 24

Bài 7.15 trang 47

Viết phương trình của đường tròn (C) trong mỗi trường hợp sau:

a. Có tâm I(-2; 5) và bán kính R = 7.

b. Có tâm I(1; -2) và đi qua điểm A(-2; 2)

c. Có đường kính AB, với A(-1; -3), B(-3; 5)

d. Có tâm I(1; 3) và tiếp xúc với đường thẳng x + 2y + 3 = 0.

Gợi ý đáp án

a. Phương trình đường tròn là: (x +2)2 + (y -5)2 = 49.

b. Đường tròn có bán kính R = IA = \sqrt{(1+2)^{2}+(-2-2)^{2}}=5

\Rightarrow Phương trình đường tròn là: (x -1)2 + (y + 2)2 = 25.

c.

Đường tròn có đường kính:AB = \sqrt{(-3+1)^{2}+(5+3)^{2}}=\sqrt{68}

\Rightarrow Đường tròn có bán kính R = \frac{AB}{2}=\sqrt{17}

Tâm của đường tròn là trung điểm I của đoạn thẳng AB, nên I\left ( \frac{-1-3}{2};\frac{-3+5}{2} \right )=(-2;1)

\Rightarrow Phương trình đường tròn là: (x +2)2 + (y - 1)2 = 17.

d. Đường tròn tiếp xúc với đường thẳng (d): x + 2y + 3 = 0, nên bán kính đường tròn bằng khoảng cách từ tầm I đến đường thẳng.

Ta có:d_{(I;d)}=\frac{|1+2.3+3|}{\sqrt{1^{2}+2^{2}}}=2\sqrt{5} = R.

\Rightarrow Phương trình đường tròn là: (x - 1)2 + (y - 3)2 = 20.

Bài 7.16 trang 47

Trong mặt phẳng tọa độ, cho tam giác ABC với A(6; -2), B(4; 2), C(5; -5). Viết phương trình đường tròn ngoại tiếp tam giác đó.

Gợi ý đáp án

Gọi đường tròn ngoại tiếp tam giác ABC có tâm I(x; y)

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên I cách đều 3 đỉnh A, B, C. Hay IA = IB = IC

IA=\sqrt{(x-6)^{2}+(y+2)^{2}},

IB= \sqrt{(x-4)^{2}+(y-2)^{2}},

IC= \sqrt{(x-5)^{2}+(y+5)^{2}}

Vì IC = IA = IB, nên ta có hệ phương trình:

\left\{\begin{matrix}(x-6)^{2}+(y+2)^{2}=(x-4)^{2}+(y-2)^{2}\\ (x-4)^{2}+(y-2)^{2}=(x-5)^{2}+(y+5)^{2}\end{matrix}\right.\\\Leftrightarrow \left\{\begin{matrix}-12x+36+4y+4=-8x+16-4y+4\\ -8x+16-4y+4=-10x+25+10y+25\end{matrix}\right.

\Leftrightarrow \left\{\begin{matrix}x=1\\ y=-2\end{matrix}\right.

\Rightarrow Đường tròn có tâm I(1; -2)

Tính IA = \sqrt{(1-6)^{2}+(-2+2)^{2}} = 5

Vậy phương trình đường tròn là: (x -1)2 + (y+2)2 = 25.

Bài 7.17 trang 47

Cho đường tròn (C): x 2 + y 2 + 2x - 4y + 4 = 0. Viết phương trình tiếp tuyến d của (C) tại điểm M(0; 2).

Gợi ý đáp án

Do 02 + 22 + 2.0 - 4.2 + 4 = 0, nên M thuộc đường tròn (C).

Đường tròn (C) có tâm I(-1; 2). Tiếp tuyến của (C) tại M có vectơ pháp tuyến là I \overrightarrow{IM}(1; 0) nên phương trình là:

1(x - 0) + 0.(y - 2) = 0 hay x =0.

Bài 7.18 trang 47

Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0\leq t\leq 180) vật thể ở vị trí có tọa độ (2 + sin to; 4 + costo).

a. Tìm vị trí ban đầu và vị trí kết thúc của vật thể.

b. Tìm quỹ đạo chuyển động của vật thể.

Gợi ý đáp án

a. Vị trí ban đầu của vật thể là tại thời điểm t = 0, nên tọa độ của điểm là: (2 + sin 0o; 4 + cos 0o) = (2; 5)

Vị trí kết thúc của vật thể là tại thời điểm t = 180, nên tọa độ của điểm là: (2 + sin 180o; 4 + cos 180o) = (2; 3)

b. Gọi điểm M(x; y) thuộc vào quỹ đạo chuyển động của vật thể.

Ta có: x = 2 + sin to và y = 4 + costo

\Rightarrow x - 2 = sin to và y - 4 = costo

sin^{2}t^{o}+cos^{2}t^{o}=1

Nên (x - 2)2 + (y - 4)2 =1

Vậy quỹ đạo chuyển động của vật thể là đường tròn có tâm I(2; 4) và bán kính bằng 1.

Liên kết tải về

pdf Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ

Chủ đề liên quan

Học tập

Lớp 10

Toán 10 KNTT

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK