a, Xét tứ giác BFEC có:
∠BFC = 90o (CF là đường cao)
∠BEC = 90o (BE là đường cao)
=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 2 góc bằng nhau
=> Tứ giác BFEC là tứ giác nội tiếp
Xét tứ giác BFHD có:
∠BFH = 90o (CF là đường cao)
∠BDH = 90o (AD là đường cao)
=> ∠BFH + ∠BDH = 180o
=> Tứ giác BFHD là tứ giác nội tiếp
b, Xét ΔDHC và ΔDBA có:
∠HDC = ∠BDA = 90o
∠DHC = ∠DBA ( cùng bù với góc ∠FHD )
=> ΔDHC ∼ ΔDBA (g.g)
=> =
=> DH.DA = DC.DB
c, Ta có: ∠KDI = 90o (AD là đường cao)
=> D thuộc đường tròn đường kính KI (1)
Tam giác AFH vuông tại F có FK là trung tuyến nên KF = KH
Do đó ΔKFH cân tại K => ∠KFH = ∠KHF
Mà ∠KHF = ∠CHD (đối đỉnh) => ∠KFH = ∠CHD
Tương tự ΔICF cân tại C (do IF = IC) => ∠IFC = ∠ICF
Từ đó: ∠KFI = ∠KFH + ∠IFC = ∠CHD + ∠ICF = 90o (ΔDHC vuông tại D)
=> F thuộc đường tròn đường kính KI (2)
Chứng minh tương tự ∠KEI = 90o nên E thuộc đường tròn đường kính KI (3)
Từ (1), (2), (3): 5 điểm K, F, D, I, E thuộc đường tròn đường kính KI
d, Xét ΔMFB và ΔMCE có:
=> ΔMFB ∼ ΔMCE
=> MF.ME = MB.MC
Chứng minh tương tự: ME. MF = MD. MI
Từ đó: MB.MC = MD. MI
Vậy
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK