a, Xét tứ giác BEFC có:
∠BEC = (CE là đường cao)
∠BFC = (BF là đường cao)
=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEFC là tứ giác nội tiếp
Xét tứ giác AEHF có:
∠AEH = (CE là đường cao)
∠AFH = (BF là đường cao)
=> ∠AEH + ∠AFH =
=> Tứ giác AEHF là tứ giác nội tiếp
b,
Xét ΔSBE và ΔSFC có:
∠FSC là góc chung
∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)
=> ΔSBE ∼ ΔSFC (g.g)
=> =
=> SE.SF = SB.SC (1)
Xét ΔSMC và ΔSNB có:
∠ NSC là góc chung
∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)
=> ΔSMC ∼ ΔSBN (g.g)
=> =
=>SM.SN = SB.SC (2)
Từ (1) và (2) => SE.SF = SM.SN
c, Ta có:
(2 góc nội tiếp cùng chắn cung KB)
(tứ giác AEHF là tứ giác nội tiếp)
(tứ giác BEFC là tứ giác nội tiếp)
=> ∠KAE = ∠HAE
=> AE là tia phân giác của góc ∠KAH
Mà AE cũng là đường cao của tam giác KAH
=> ΔKAH cân tại A
=> AE là đường trung tuyến của ΔKAH
=> E là trung điểm của KH hay K và H đối xứng nhau qua AB
d, Tia BF cắt đường tròn (O) tại J
∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)
∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )
=> ∠KJB = ∠EFH
Mà 2 góc này ở vị trí so le trong
=> KJ // EF
KI // EF (gt)
=> I ≡ J
=> H, F, J thẳng hàng
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK