a, Ta có:
∠AMB = (góc nội tiếp chắn nửa đường tròn)
=> ∠DMC =
∠ANB = (góc nội tiếp chắn nửa đường tròn)
=> ∠DNC =
Xét tứ giác MCND có:
∠DMC + ∠DNC = + =
=> Tứ giác MCDN là tứ giác nội tiếp
Do ∠DMC = nên DC là đường kính đường tròn ngoại tiếp tứ giác MCDN
Do đó tâm I của đường tròn ngoại tiếp tứ giác là trung điểm I của DC
b, Xét tam giác CAB có:
AN ⊥ BC
BM ⊥ AC
AN giao với BM tại H
=> H là trực tâm của tam giác CAB
=> CH ⊥ BA
Xét ΔCHB và ΔBNA có:
∠CBA là góc chung
∠CHB = ∠ANB =
=>ΔCHB ∼ ΔANB
=> =
=>BN.BC = BA.BH
c, Xét tam giác HDB vuông tại H có:
∠BDH + ∠DBH = (1)
Xét tam giác IDM cân tại I (ID = IM )
=> ∠IMD = ∠IDM
Mà ∠IDM = ∠BDH (đối đỉnh)
=> ∠IMD = ∠BDH (2)
Mặt khác tam giác OBM cân tại O ( OB = OM)
=> ∠OMB = ∠DBH (3)
Từ (1); (2) và (3)
=> ∠IMD + ∠OMB = ∠BDH + ∠DBH =
=> ∠IMO =
d, Xét tam giác BAN vuông tại N có:
∠NAB = => ∠NBA =
Xét tam giác CHB vuông tại H có ∠NBA =
=> BH = CH.cot =
Lại có: Tam giác CHA vuông tại H có ∠CAH =
=> Tam giác CHA vuông cân tại H => CH = HA
Ta có:
AB = HA + HB = CH + = CH
=> CH = 2R => CH =
Diện tích tam giác ABC là:
= .CH.AB = . .2R =
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK