Đề thi học sinh giỏi lớp 12 THPT tỉnh Bến Tre năm 2012 - 2013 môn Toán

Đề thi học sinh giỏi lớp 12 THPT tỉnh Bến Tre năm 2012 - 2013 môn Toán

Đề thi môn Toán

SỞ GIÁO DỤC VÀ ĐÀO TẠO
BẾN TRE

ĐỀ THI CHÍNH THỨC

KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH
NĂM HỌC 2012 - 2013

MÔN THI: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)

Bài 1: (4 điểm)

Cho P là điểm nằm trên hyperbol xy = 4 và Q là điểm nằm trên elip x2 + 4y2 = 4. Chứng minh độ dài đoạn PQ lớn hơn 1.

Bài 2: (4 điểm)

Chứng minh bất đẳng thức: Đề thi học sinh giỏi lớp 12 THPT tỉnh Bến Tre năm 2012 - 2013 môn Toánvới mọi số thực a, b, c.

Bài 3: (4 điểm)

Cho dãy số {xn}1 được xác định như sau:

Đề thi học sinh giỏi lớp 12 THPT tỉnh Bến Tre năm 2012 - 2013 môn Toán

Tìm công thức tổng quát của dãy.

Bài 4: (4 điểm)

Cho tập hợp A có n phần tử, n > 4 Tìm n biết rằng số tập con của A có số phần tử là lẻ bằng 2048n.

Bài 5: (4 điểm)

Tìm hàm số f: N* -> N* (N* là tập các số tự nhiên dương) thỏa mãn: f(n) + 2f(f(n)) = 3n + 5 với mọi n thuộc N*.

Download tài liệu để xem thêm chi tiết.

Liên kết tải về

pdf Đề thi học sinh giỏi lớp 12 THPT tỉnh Bến Tre năm 2012 - 2013 môn Toán

Chủ đề liên quan

Học tập

Lớp 12

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK