Cho đường tròn (O; R) đường kính AB và điểm I cố định nằm giữa A và O. Dây CD vuông góc với AB tại I. Gọi E là điểm tùy ý thuộc dây CD (E không trùng với C, D). Tia AE cắt (O) tại...

Câu hỏi :

Cho đường tròn (O; R) đường kính AB và điểm I cố định nằm giữa A và O. Dây CD vuông góc với AB tại I. Gọi E là điểm tùy ý thuộc dây CD (E không trùng với C, D). Tia AE cắt (O) tại F.

a) Chứng minh tứ giác BIEF nội tiếp.

b) Chứng minh: AC2 = AI.AB = AE.AF .

c) Kẻ đường kính CM của (O); kẻ dây DN vuông góc với FM. Chứng minh CN = DF.

d) Gọi giao điểm của CN và DF là K. Chứng minh rằng giao điểm của OK với BC là tâm đường tròn ngoại tiếp tam giác CEF.

* Đáp án

* Hướng dẫn giải

Cho đường tròn (O; R) đường kính AB và điểm I cố định nằm giữa A và O. Dây CD vuông góc với AB tại I. Gọi E là điểm tùy ý thuộc dây CD (E không trùng với C, D). Tia AE cắt (O) tại F. a) Chứng minh tứ giác BIEF nội tiếp. b) Chứng minh: AC2 = AI.AB = AE.AF . c) Kẻ đường kính CM của (O); kẻ dây DN vuông góc với FM. Chứng minh CN = DF. d) Gọi giao điểm của CN và DF là K. Chứng minh rằng giao điểm của OK với BC là tâm đường tròn ngoại tiếp tam giác CEF. (ảnh 1)

a) Ta có: EIB^= 90° (vì CI AB)

EFB^= 90° (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác BIEF có EIB^+EFB^= 90° + 90° = 180°

Suy ra tứ giác BIEF nội tiếp.

b) Tam giác ABC có ACB^= 90° (góc nội tiếp chắn nửa đường tròn)

Suy ra ∆ACB vuông tại C

Xét ∆ACB vuông tại C đường cao IC, ta được:

AC2 = AI . AB (1)

Xét ∆ AEI và ∆ ABF có:

FAB^ là góc chung

AEI^=ABF^ (tứ giác BIEF nội tiếp)

Suy ra ∆ AEI  ∆ ABF (g.g)

Từ đó suy ra AEAB=AIAFAE.AF=AB.AI (2)

Từ (1) và (2) suy ra

AC2 = AI.AB = AE.AF (điều phải chứng minh)

c) Ta có CF FM (CFM^ = 90° góc nội tiếp chắn nửa đường tròn)

DN FM (giả thiết)

Suy ra CF // DM

Suy ra tứ giác CFND là hình thang (3)

Ta có CFD^=FDN^ (hai góc so le trong của CF // DN)

Suy ra CD=NF (hai góc nội tiếp bằng nhau)

Û CD+CF=CF+FN

Û DF=CN

FND^=CDN^ (hai góc nội tiếp chắn hai cung bằng nhau) (4)

Từ (3) và (4) suy ra tứ giác CFND là hình thang cân.

Suy ra CN = FD (hai đường chéo của hình thang cân).

d) Ta có K là giao điểm của CN và FD nên:

CK = KF

Mà ta cũng có CO = OF = R.

Suy ra OK là trung trực của CF.

Suy ra tâm đường tròn ngoại tiếp của CEF sẽ thuộc đường thẳng OK (5)

Ta có O là trung điểm CM.

I là trung điểm CD (đường kính vuông góc với dây thì đi qua trung điểm của dây).

Suy ra OI là đường trung bình của ∆DCM.

Suy ra IO // DM.

Suy ra AB // DM.

Đường tròn (O) có dây AB // dây DM suy ra AD=MB

AD+DM=DM+MB

AM=DBAFM^=DCB^

Gọi P là giao điểm của FM và CB.

Xét tứ giác ECFP có ECP^=EFP^

Suy ra tứ giác ECFP nội tiếp.

Tứ giác ECFP nội tiếp có CFP^= 90° (góc nội tiếp chắn nửa đường tròn)

Suy ra CP là đường kính của đường tròn ngoại tiếp tứ giác ECFP.

Suy ra tâm đường tròn ngoại tiếp tứ giác ECFP thuộc CP.

Hay tâm đường tròn ngoại tiếp tam giác CEF thuộc CB (6)

Từ (5) và (6) suy ra tâm đường tròn ngoại tiếp ∆CEF là giao điểm của OK và BC

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK