Cho hàm số y=f(x) có bảng biến như sau: số nghiệm thuộc đoạn

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có bảng biến như sau:

A. 12                        

B. 11                         

C. 9                           

D. 10

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Đặt \(t = \cos x{\rm{ }}\left( { - 1 \le t \le 1} \right),{\rm{ u}} = {t^2} - t\).

Lập bảng biến thiên của hàm số \(g\left( t \right) = {t^2} - t,{\rm{ t}} \in \left[ { - 1;1} \right]\).

Cho hàm số y=f(x)  có bảng biến như sau:  số nghiệm thuộc đoạn (ảnh 2)

Ta có phương trình \(f\left( u \right) = \frac{1}{5}\) (1). Dựa vào bảng biến thiên đề bài cho thì (1) có 4 nghiệm là

\(\left[ \begin{array}{l}u = a \in \left( { - \infty ; - \frac{1}{4}} \right)\\u = b \in \left( { - \frac{1}{4};0} \right)\\u = c \in \left( {0;2} \right)\\u = d \in \left( {2; + \infty } \right)\end{array} \right.\).

Với \(u = a\) thì phương trình vô nghiệm.

Với \(u = b\) thì phương trình có hai nghiệm \(t = {t_1} \in \left( {0;\frac{1}{2}} \right);{\rm{ }}t = {t_2} \in \left( {\frac{1}{2};1} \right)\).

Với \(u = c\) thì phương trình có một nghiệm \(t = {t_3} \in \left( { - 1;0} \right)\).

Cho hàm số y=f(x)  có bảng biến như sau:  số nghiệm thuộc đoạn (ảnh 3)

Với \(u = d\) thì phương trình vô nghiệm.

Với \(t = {t_1}\) thì phương trình ban đầu có 4 nghiệm phân biệt thuộc \(\left[ { - \frac{\pi }{2}; - \frac{\pi }{3}} \right],{\rm{ }}\left[ {\frac{\pi }{3};\frac{\pi }{2}} \right],{\rm{ }}\left[ {\frac{{3\pi }}{2};\frac{{11\pi }}{6}} \right]\), \(\left[ {\frac{{7\pi }}{3};\frac{{5\pi }}{2}} \right]\).

Với \(t = {t_2}\) thì phương trình ban đầu có 4 nghiệm phân biệt thuộc \(\left[ { - \frac{\pi }{3};0} \right],{\rm{ }}\left[ {0;\frac{\pi }{3}} \right],{\rm{ }}\left[ {\frac{{11\pi }}{6};2\pi } \right],{\rm{ }}\left[ {2\pi \frac{{7\pi }}{3}} \right]\).

Với \(t = {t_3}\) thì phương trình ban đầu có 2 nghiệm phân biệt thuộc \(\left[ {\frac{\pi }{2};\pi } \right],{\rm{ }}\left[ {\pi ;\frac{{3\pi }}{2}} \right]\).

Vậy phương trình ban đầu có tất cả 10 nghiệm.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK