Cho a, b, c là các số thực dương thỏa mãn 2ab + 6bc + 2ca = 7abc. Tìm giá trị nhỏ nhất của biểu thức P

Câu hỏi :

Cho a, b, c là các số thực dương thỏa mãn \[2ab + 6bc + 2ca = 7abc\]. Tìm giá trị nhỏ nhất của biểu thức \[P = \frac{{4ab}}{{a + 2b}} + \frac{{9ca}}{{a + 4c}} + \frac{{4bc}}{{b + c}}\].

* Đáp án

* Hướng dẫn giải

Định hướng: Với dạng toán này hướng chung cần tìm mối liên hệ giữa các ẩn và đơn giản hóa biểu thức cần tìm GTNN, GTLN. Đối với học sinh cấp THCS, phương pháp giải dạng toán này thường dùng đánh giá theo bất đẳng thức Cô-si, Bu-nhi-a-cốp-xki, bất đẳng thức phụ hoặc viết dưới dạng tổng bình phưong nhờ thêm bớt... Tuy nhiên, áp dụng ngay các phưong pháp này sẽ dẫn tới bài toán phức tạp hơn hoặc không đúng với yêu cầu của đề. Việc dự đoán điểm rơi khá phức tạp cho bài toán này.

Bằng phưong pháp đổi biến đưa bài toán về dạng đơn giản hơn.

Nhận thấy rằng, giả thiết đã cho các ẩn cùng phụ thuộc trong cùng một biếu thức dễ dưa được về dạng các biến độc lập với nhau.

Tử thức các phân thức trong biểu thức P là tích của hai ẩn dưới mẫu đưa về dạng độc lập khá đơn giản.

Từ: \[2ab + 6bc + 2ca = 7abc\]\[a,\,\,b,\,\,c > 0\], ta suy ra \[\frac{2}{c} + \frac{6}{a} + \frac{2}{b} = 7\].

Đặt \[x = \frac{1}{a},\,\,y = \frac{1}{b},\,\,z = \frac{1}{c} \Rightarrow \left\{ \begin{array}{l}x,\,\,y,\,\,z > 0\\2z + 6x + 2y = 7\end{array} \right.\].

Khi đó: \[P = \frac{4}{{2x + y}} + \frac{9}{{4x + z}} + \frac{4}{{y + z}}\]

Để tìm GTNN của P thí sinh có thể sử dụng một trong hai cách dưới đây.

Cách 1: Bất đẳng thức Cô-si bằng việc thêm bớt các ẩn.

Phân tích (*) trở thành:

\[P = \frac{4}{{2x + y}} + \frac{9}{{4x + z}} + \frac{4}{{y + z}}\]

\[ = \frac{4}{{2x + y}} + m\left( {2x + y} \right) + \frac{9}{{4x + z}} + n\left( {4x + z} \right) + \frac{4}{{y + z}} - m\left( {2x + y} \right) - n\left( {4x + z} \right) - p\left( {y + z} \right)\]

\[\left( {m,\,\,n,\,\,p > 0} \right)\]

Khi đó

\[P \ge 2\sqrt {\frac{4}{{2x + y}}.m\left( {2x + y} \right)} + 2\sqrt {\frac{9}{{4x + z}}.n\left( {4x + z} \right)} \]

\[ + 2\sqrt {\frac{4}{{y + z}}.p\left( {y + z} \right)} - m\left( {2x + y} \right) - n\left( {4x + z} \right) - p\left( {y + z} \right)\]

\[ = 4\sqrt m + 6\sqrt n + 4\sqrt p - \left( {x\left( {2x + 4n} \right) + y\left( {m + p} \right) + z\left( {n + p} \right)} \right)\]

Ta chọn bộ số \[m,\,\,n,\,\,p > 0\] sao cho \[\left\{ \begin{array}{l}2x + 4n = 6\\m + p = 2\\n + p = 1\end{array} \right. \Leftrightarrow m = n = p = 1\].

Suy ra: \[P \ge 4 + 6 + 4 - 7 = 7\]

Với cơ sở phân tích như trên thí sinh có thể đưa biểu thức P về dạng tổng các bình phương để chỉ ra GTNN.

Cách 2: Áp dụng bổ để bất đẳng thức:

          \[\frac{{{x^2}}}{a} + \frac{{{y^2}}}{b} \ge \frac{{{{\left( {x + y} \right)}^2}}}{{a + b}}\,\,\left( {a,\,\,b,\,\,x,\,\,y > 0} \right)\]      (I)

Chứng minh bằng phương pháp biến đổi tương đương.

Tổng quát của bất đẳng thức (I) có dạng:

\[\frac{{x_1^2}}{{{a_1}}} + \frac{{x_2^2}}{{{a_2}}} + ... + \frac{{x_n^2}}{{{a_n}}} \ge \frac{{{{\left( {{x_1} + {x_2} + ... + {x_n}} \right)}^2}}}{{{a_1} + {a_2} + ... + {a_n}}}\,\,\left( {{a_1} > 0,\,\,{x_i} > 0,\,\,i = \overline {1,\,\,n} } \right)\]

Áp dụng bất đẳng thức (I) ta suy ra

\[P = \frac{4}{{2x + y}} + \frac{9}{{4x + z}} + \frac{4}{{y + z}} \ge \frac{{{{\left( {2 + 3} \right)}^2}}}{{6x + y + z}} + \frac{{{2^2}}}{{y + z}} \ge \frac{{{{\left( {2 + 3 + 2} \right)}^2}}}{{6x + 2y + 2z}} = \frac{{{7^2}}}{7} = 7\]

Do đó, GTNN của P là 7 khi \[a = 2;\,\,b = 1;\,\,c = 1\].

 Giải:

Từ giả thiết: \[2ab + 6bc + 2ca = 7abc\]\[a,\,\,b,\,\,c > 0\]

Chia cả hai vế cho \[abc > 0 \Rightarrow \frac{2}{c} + \frac{6}{a} + \frac{2}{b} = 7\].

Đặt: \[x = \frac{1}{a},\,\,y = \frac{1}{b},\,\,z = \frac{1}{c} \Rightarrow \,\left\{ \begin{array}{l}x,\,\,y,\,\,z > 0\\2z + 6x + 2y = 7\end{array} \right.\].

Khi đó: \[P = \frac{{4ab}}{{a + 2b}} + \frac{{9ac}}{{a + 4c}} + \frac{{4bc}}{{b + c}} = \frac{4}{{2x + y}} + \frac{9}{{4x + z}} + \frac{4}{{y + z}}\]          (*)

\[ \Rightarrow P = \frac{4}{{2x + y}} + 2x + y + \frac{9}{{4x + z}} + 4x + z + \frac{4}{{y + z}} + y + z - \left( {2x + y + 4x + z + y + z} \right)\]

\[ = {\left( {\frac{2}{{\sqrt {x + 2y} }} - \sqrt {x + 2y} } \right)^2} + {\left( {\frac{3}{{\sqrt {4x + z} }} - \sqrt {4x + 1} } \right)^2} + {\left( {\frac{2}{{\sqrt {y + z} }} - \sqrt {y + z} } \right)^2} + 7 \ge 7\]

Khi \[x = \frac{1}{2};\,\,y = z = 1\] thì \[P = 7\].

Vậy GTNN của P là 7 khi \[a = 2;\,\,b = 1;\,\,c = 1\].

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!

Số câu hỏi: 45

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK