Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.
Cho hai tam giác ABC và DEF bất kỳ, thỏa mãn AB = FE, BC = DF, \(\widehat {ABC} = \widehat {DFE}\). Những câu nào dưới đây đúng?
a) ∆ABC = ∆DFE.
b) ∆BAC = ∆EFD.
c) ∆CAB = ∆EFD.
d) ∆ABC = ∆EFD.
Cho hai tam giác ABC và MNP bất kì, thỏa mãn \(\widehat {ABC} = \widehat {PNM}\), \(\widehat {ACB} = \widehat {NPM}\) và BC = PN. Những câu nào dưới đây đúng?
a) ∆ABC = ∆PNM.
b) ∆ABC = ∆NPM.
c) ∆ABC = ∆MPN.
d) ∆ABC = ∆MNP.
Cho các điểm A, B, C, D như Hình 4.24, biết rằng AC = BD và \(\widehat {DBA} = \widehat {CAB}\).
Chứng minh rằng AD = BC.
Cho các điểm A, B, C, D như Hình 4.25, biết rằng \(\widehat {BAC} = \widehat {BAD}\) và \(\widehat {BCA} = \widehat {BDA}\).
Chứng minh rằng ∆ABC = ∆ABD.
Cho các điểm A, B, C, D, E như Hình 4.26, biết rằng AB = CD, \(\widehat {BAE} = \widehat {DCE}\). Chứng minh rằng:
∆ACD = ∆CAB.
AD song song với BC.
Cho các điểm A, B, C, D, E như Hình 4.27, biết rằng AD = BC, \[\widehat {ADE} = \widehat {BCE}\]. Chứng minh rằng:
∆AED = ∆BEC.
AB song song với DC.
Cho tam giác ABC bằng tam giác DEF (H.4.28).
Gọi M và N lần lượt là trung điểm các đoạn thẳng BC và EF. Chứng minh rằng AM = DN.
Gọi M và N lần lượt là trung điểm các đoạn thẳng cạnh BC và EF của hai tam giác ABC và DEF. Giả sử rằng AB = DE, BC = EF, AM = DN (H.4.29). Chứng minh rằng ∆ABC = ∆DEF.
Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Liên hệ hợp tác hoặc quảng cáo: gmail
Điều khoản dịch vụ
Copyright © 2021 HOCTAPSGK