Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OB = OC = OD như Hình 4.30. Chứng minh ABCD là hình chữ nhật.
Hướng dẫn giải
Xét ∆OAB và ∆OCD ta có:
OA = OC (giả thiết)
\(\widehat {AOB} = \widehat {COD}\) (hai góc đối đỉnh)
OB = OD (giả thiết)
Do đó, ∆OAB = ∆OCD (c – g – c).
Suy ra AB = DC và \(\widehat {BAO} = \widehat {OCD}\) hay \(\widehat {BAC} = \widehat {ACD}\).
Mà hai góc này ở vị trí so le trong, do đó AB // DC (1).
Xét ∆OAD và ∆OCB ta có:
OA = OC (giả thiết)
\(\widehat {AOD} = \widehat {BOC}\) (hai góc đối đỉnh)
OD = OB (giả thiết)
Do đó, ∆OAD = ∆OCB (c – g – c).
Suy ra AD = BC và \(\widehat {OAD} = \widehat {OCB}\) hay \(\widehat {CAD} = \widehat {ACB}\).
Mà hai góc này ở vị trí so le trong nên AD // BC (2).
Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành.
Ta có: OA = OC = OB = OD, AC = OA + OC, BD = OB + OD.
Do đó, AC = BD.
Xét tam giác ABD và tam giác DCA có:
AB = DC (chứng minh trên)
AD: cạnh chung
BD = AC (chứng minh trên)
Do đó, ∆ABD = ∆DCA (c – c – c).
Suy ra \(\widehat {BAD} = \widehat {CDA}\).
Lại có: \(\widehat {BAD} + \widehat {CDA} = 180^\circ \) (do AB // DC, hai góc ở vị trí trong cùng phía)
Do đó: \(\widehat {BAD} = \widehat {CDA} = \frac{{180^\circ }}{2} = 90^\circ \).
Vậy hình bình hành ABCD có một góc vuông nên nó là hình chữ nhật.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK