Trang chủ Đề thi & kiểm tra Lớp 10 Toán học Đề thi HK2 môn Toán 10 năm 2021 - Trường THPT Thủ Khoa Huân

Đề thi HK2 môn Toán 10 năm 2021 - Trường THPT Thủ Khoa Huân

Câu hỏi 1 :

Tập nghiệm của bất phương trình \(\frac{{x - 1}}{{x - 3}} > 1\) là:

A. \(\emptyset \)

B. \(\mathbb{R}\)

C. \(\left( {3; + \infty } \right)\)

D. \(\left( { - \infty ;5} \right)\)

Câu hỏi 2 :

Tìm giá trị của \(x\) thỏa mãn bất phương trình \(1 - \sqrt {13 + 3{x^2}}  > 2x\).

A. \(x = \frac{3}{2}\)

B. \(x =  - \frac{3}{2}\)

C. \(x = \frac{7}{2}\)

D. \(x =  - \frac{7}{2}\)

Câu hỏi 3 :

Cho ba số \(a,b,c\)dương. Mệnh đề nào sau đây sai ?

A. \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} + \frac{1}{{1 + {c^2}}} \ge \frac{1}{2}\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)\)

B. \((1 + 2b)(2b + 3a)(3a + 1) \ge 48ab\)   

C. \((1 + 2a)(2a + 3b)(3b + 1) \ge 48ab\)

D. \(\left( {\frac{a}{b} + 1} \right)\left( {\frac{b}{c} + 1} \right)\left( {\frac{c}{a} + 1} \right) \ge 8\)

Câu hỏi 4 :

Giải bất phương trình\(\left| {2x + 5} \right| \le {x^2} + 2x + 4\) được các giá trị \(x\) thỏa mãn:

A. \(x \le  - 1\) hoặc \(x \ge 1\)

B. \( - 1 \le x \le 1\)

C. \(x \le 1\)

D. \(x \ge 1\)

Câu hỏi 6 :

Tập nghiệm của bất phương trình \(\frac{{x - 1}}{{{x^2} + 4x + 3}} \le 0\) là:

A. \(\left[ { - 3; - 1} \right] \cup \left[ {1; + \infty } \right)\)

B. \(\left( { - \infty ; - 3} \right) \cup \left( { - 1;1} \right]\)

C. \(\left( { - \infty ; - 3} \right] \cup \left[ { - 1;1} \right]\)

D. \(\left( { - 3; - 1} \right) \cup \left[ {1; + \infty } \right)\)

Câu hỏi 8 :

Tam thức \(f(x) = {x^2} - 12x - 13\) nhận giá trị âm khi và chỉ khi:

A. \(-1 < x < 13\)  

B. \(-13 < x < 1\)

C. \(x < -1\)  hoặc \(x > 13\)

D. \(x < -13\) hoặc \(x > 1\)

Câu hỏi 9 :

Cặp bất phương trình nào sau đây không tương đương?

A. \(\sqrt {x - 1}  \ge x\) và \(\left( {2x + 1} \right)\sqrt {x - 1}  \ge x\left( {2x + 1} \right)\).

B. \(2x - 1 + \frac{1}{{x - 3}} < \frac{1}{{x - 3}}\)và \(2x - 1 < 0\).

C. \({x^2}\left( {x + 2} \right) < 0\)và \(x + 2 < 0\). 

D. \({x^2}\left( {x + 2} \right) > 0\) và \(\left( {x + 2} \right) > 0\)

Câu hỏi 10 :

Cho đường thẳng \(\left( d \right)\) có phương trình tổng quát: \(3x - 2y + 2019 = 0\). Tìm mệnh đề sai trong các mệnh đề sau:

A. \(\left( d \right)\)có vectơ pháp tuyến là  \(\overrightarrow n  = \left( {3; - 2} \right)\)

B. \(\left( d \right)\)có vectơ chỉ phương  \(\overrightarrow u  = \left( {2;3} \right)\)

C. \(\left( d \right)\)song song với đường thẳng \(\frac{{x + 5}}{2} = \frac{{y - 1}}{3}\)

D. \(\left( d \right)\)có hệ số góc \(k =  - 2\)

Câu hỏi 11 :

Trong mặt phẳng tọa độ \(Oxy,\)cho đường thẳng \(d:2x + 3y - 4 = 0.\) Vectơ nào sau đây là vectơ pháp tuyến của đường thẳng \(d?\)

A. \(\overrightarrow {{n_1}}  = \left( {3;2} \right)\)

B. \(\overrightarrow {{n_2}}  = \left( { - 4; - 6} \right)\)

C. \(\overrightarrow {{n_3}}  = \left( {2; - 3} \right)\)

D. \(\overrightarrow {{n_4}}  = \left( { - 2;3} \right)\)

Câu hỏi 12 :

Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\,\,\,\left( {a \ne 0} \right).\) Điều kiện cần và đủ để \(f\left( x \right) < 0\,\,\forall \,x \in \mathbb{R}\) là:

A. \(\left\{ \begin{array}{l}a > 0\\\Delta  \ge 0\end{array} \right.\)

B. \(\left\{ \begin{array}{l}a < 0\\\Delta  \le 0\end{array} \right.\)

C. \(\left\{ \begin{array}{l}a < 0\\\Delta  > 0\end{array} \right.\)

D. \(\left\{ \begin{array}{l}a < 0\\\Delta  < 0\end{array} \right.\)

Câu hỏi 13 :

Tìm phương trình chính tắc của elip biết elip có độ dài trục lớn gấp đôi độ dài trục bé và có tiêu cự bằng \(4\sqrt 3 ?\)

A. \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\)

B. \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{24}} = 1\)

C. \(\frac{{{x^2}}}{{24}} + \frac{{{y^2}}}{{16}} = 1\)

D. \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\)

Câu hỏi 14 :

Đường thẳng đi qua hai điểm \(A\left( {3;3} \right)\) và \(B\left( {5;5} \right)\) có phương trình tham số là:

A. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = 3 - 2t\end{array} \right.\)

B. \(\left\{ \begin{array}{l}x = 5 + t\\y = 5 - 2t\end{array} \right.\) 

C. \(\left\{ \begin{array}{l}x = 5 + 2t\\y = 2t\end{array} \right.\)

D. \(\left\{ \begin{array}{l}x = t\\y = t\end{array} \right.\)

Câu hỏi 18 :

Trong tam giác \(ABC,\) nếu có \({a^2} = b.c\) thì:

A. \(\frac{1}{{h_a^2}} = \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}}\)

B. \(\frac{1}{{h_a^2}} = \frac{2}{{{h_b}}} + \frac{2}{{{h_c}}}\)

C. \(\frac{1}{{h_a^2}} = \frac{1}{{{h_b}}} - \frac{1}{{{h_c}}}\)

D. \(h_a^2 = {h_b}.{h_c}\)

Câu hỏi 19 :

Với giá trị nào của \(a\) thì hệ bất phương trình \(\left\{ \begin{array}{l}\left( { - {a^2} - 3} \right)x + a - 3 < 0\\\left( {{a^2} + 1} \right)x - a + 2 < 0\end{array} \right.\) có nghiệm?

A. \(\left[ \begin{array}{l}a > 1\\a <  - 3\end{array} \right.\)

B. - 3 < a < 1

C. \(\left[ \begin{array}{l}a >  - 1\\a <  - 3\end{array} \right.\)

D. - 3 < a <  - 1

Câu hỏi 20 :

Đường tròn nào dưới đây đi qua điểm \(A\left( {4; - 2} \right)?\)

A. \({x^2} + {y^2} - 6x - 2y + 9 = 0\)

B. \({x^2} + {y^2} + 2x - 20 = 0\)

C. \({x^2} + {y^2} - 2x + 6y = 0\)

D. \({x^2} + {y^2} - 4x + 7y - 8 = 0\)

Câu hỏi 21 :

Tập nghiệm của bất phương trình \( - {x^2} + 6x + 7 \ge 0\) là:

A. \(\left[ { - 7;1} \right]\)

B. \(\left[ { - 1;7} \right]\)

C. \(\left( { - \infty ; - 7} \right] \cup \left[ {1; + \infty } \right)\)

D. \(\left( { - \infty ; - 1} \right] \cup \left[ {7; + \infty } \right)\)

Câu hỏi 22 :

Cho nhị thức bậc nhất \(f\left( x \right) = 23x - 20.\) Khẳng định nào sau đây đúng?

A. \(f\left( x \right) > 0\) với \(\forall x \in \mathbb{R}\)

B. \(f\left( x \right) > 0\) với \(\forall x \in \left( { - \infty ;\frac{{20}}{{23}}} \right)\)

C. \(f\left( x \right) > 0\) với \(x >  - \frac{5}{2}\)

D. \(f\left( x \right) > 0\) với \(\forall x \in \left( {\frac{{20}}{{23}}; + \infty } \right)\)

Câu hỏi 25 :

Tính \(B = \frac{{1 + 5\sin \alpha \cos \alpha }}{{3 - 2{{\cos }^2}\alpha }},\) biết \(\tan \alpha  = 2.\)

A. \(\frac{{15}}{{13}}\)

B. \(\frac{{13}}{{14}}\)

C. \(\frac{{ - 15}}{{13}}\)

D. 1

Câu hỏi 26 :

Hệ số góc của đường thẳng \(\left( \Delta  \right):\sqrt 3 x - y + 4 = 0\) là

A. \( - \dfrac{1}{\sqrt 3 }\)

B. \( - \sqrt 3 \)

C. \(\dfrac{4 }{\sqrt 3 }\)

D. \(\sqrt 3 \)

Câu hỏi 28 :

Phương trình tham số của đường thẳng \(\left( d \right):4x + 5y - 8 = 0\) là

A. \(\left\{ \matrix{  x = 2 + 4t \hfill \cr  y = 5t \hfill \cr}  \right.\) 

B. \(\left\{ \matrix{  x = 2 + 5t \hfill \cr  y =  - 4t \hfill \cr}  \right.\)

C. \(\left\{ \matrix{  x = 2 + 5t \hfill \cr  y = 4t \hfill \cr}  \right.\)

D. \(\left\{ \matrix{  x = 2 - 5t \hfill \cr  y =  - 4t \hfill \cr}  \right.\)

Câu hỏi 30 :

Cho đường thẳng \(d:2x + y - 2 = 0\) và điểm A(6;5). Điểm \(A'\) đối xứng với A qua (d) có tọa độ là

A. \(\left( { - 6; - 5} \right)\)

B. \(\left( { - 5; - 6} \right)\)

C. \(\left( { - 6; - 1} \right)\)

D. \(\left( {5;6} \right)\)

Câu hỏi 31 :

Cho tam giác ABC có \(A\left( {4;3} \right),B\left( {2;7} \right),C\left( { - 3; - 8} \right)\) . Chân đường cao kẻ từ đỉnh A đến cạnh BC có tọa độ là

A. \(\left( {1;4} \right)\)

B. \(\left( { - 1;4} \right)\)

C. \(\left( {1; - 4} \right)\)

D. \(\left( {4;1} \right)\)

Câu hỏi 32 :

Phương trình chính tắc của đường thẳng qua điểm \(M\left( {5; - 2} \right)\) nhận \(\overrightarrow n  = \left( {4; - 3} \right)\) làm vecto pháp tuyến là

A. \(\dfrac{{x - 5}}{4} = \dfrac{{y + 2}}{{ - 3}}\)

B. \(\dfrac{{x + 5}}{3} = \dfrac{{y - 2}}{4}\)

C. \(\dfrac{{x - 5}}{{ - 3}} = \dfrac{{y + 2}}{4}\)

D. \(\dfrac{{x - 5}}{3} = \dfrac{{y + 2}}{4}\)

Câu hỏi 34 :

Khoảng cách giữa hai đường thẳng \(d:5x - 7y + 4 = 0\) và \(d':10x - 14y + 11 = 0\) là

A. \(\dfrac{3 } {\sqrt {74} }\) 

B. \(\dfrac{2 }{\sqrt {74} }\) 

C. \(\dfrac{7 }{2\sqrt {74} }\)

D. \(\dfrac{3 }{\sqrt {74} }\)

Câu hỏi 35 :

Góc giửa hai đường thẳng \(\left( d \right):x + 2y + 4 = 0\) và \(\left( {d'} \right):x - 3y + 6 = 0\) là

A. \(135^\circ \) 

B. \(60^\circ \)

C. \(45^\circ \)

D. \(30^\circ \)

Câu hỏi 36 :

Điểm dối xứng với điểm \(M\left( {1;2} \right)\) qua đường thẳng \(d:2x + y - 5 = 0\) là

A. \(M'\left( { - 2;6} \right)\)

B. \(M'\left( {{9 \over 5};{{12} \over 5}} \right)\)  

C. \(M'\left( {0;{3 \over 2}} \right)\)

D. \(M'\left( {3; - 5} \right)\)

Câu hỏi 39 :

Đường thẳng qua điểm \(M\left( { - 2;0} \right)\) và tạo với đường thẳng \(d:x + 3y - 3 = 0\) góc \(45^\circ \) có phương trình là

A. 2x + y + 4 = 0

B. x - 2y + 2 = 0

C. \(2x + y + 4 = 0\) và \(x - 2y + 2 = 0\)

D. \(2x + y + 2 = 0\) và \(x - 2y + 4 = 0\)

Câu hỏi 40 :

Phương trình các đường phân giác của các góc tạo bởi trục hoành và đường thẳng \(d:4x - 3y + 10 = 0\) là

A. \(4x + 3y + 10 = 0\) và \(4x - y + 10 = 0\)

B. \(x + 3y - 10 = 0\) và \(9x + 3y - 10 = 0\)

C. \(4x + 3y + 10 = 0\) và \(4x - y - 10 = 0\)

D. \(2x - 4y + 5 = 0\) và \(2x + y + 5 = 0\)

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK