Trang chủ Toán Học Lớp 9 Cho đường tròn (O; R) với dây cung AB không...

Cho đường tròn (O; R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với

Câu hỏi :

Cho đường tròn (O; R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O; R) sao cho điểm C nằm trên cung nhỏ AB (C, D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB. 1) Chứng minh năm điểm C, D, H, O, S thuộc đường tròn đường kính SO. 2) Khi SO = 2R, hãy tính độ dài đoạn thẳng SD theo R và tính số đo góc CSD 3) Đường thẳng đi qua điểm A và song song với đường thẳng SC, cắt đoạn thẳng CD tại điểm K. Chứng minh tứ giác ADHK là tứ giác nội tiếp và đường thẳng BK đi qua trung điểm của đoạn thẳng SC. 4) Gọi E là trung điểm của đoạn thẳng BD và G là hình chiếu vuông góc của điểm E trên đường thẳng AD. Chứng minh rằng, khi điểm S thay đổi trên tia đối của tia AB thì điểm G luôn thuộc một đường tròn cố định.

Lời giải 1 :

Đáp án:

 

Giải thích các bước giải:

1. Ta có OHHS (tính chất trung điểm dây cung)

=> H nằm trên đường tròn đường kính SO

Ta có C, D là tiếp điểm nên OCSC, ODSD

=> C, D nằm trên đường tròn đường kính SO.

2. Ta có OD = R; SO = 2R

Do đó SD=SO2OD2−−−−−−−−−√=4R2R2−−−−−−−−√=R3–√

Và ta có OSD=300 (Cạnh đối diện bằng nửa cạnh huyền)

Tương tự, ta có SC = SD = R3–√, OSC=300

Do đó, tam giác SCD cân và có CSD=600

=> Tam giác SCD đều.

3. Hình vẽ:

AK//SC nên AKD =SCD = ½ cung SD của đường tròn đường kính SO

Ta có SHD = 1/2 cung SD của đường tròn đường kính SO.

=>AKD =AHD=> Tứ giác ADHK nội tiếp.

Chứng minh BK đi qua trung điểm của SC

Gọi I là giao điểm của tia AK và đoạn thẳng BC, P là giao điểm tia BK và SC. Ta chứng minh K là trung điểm của AI, AI//SC từ đó suy ra BK đi qua trung điểm P của CS. (Dùng hệ quả định lí Ta-let).

4.

Gọi M là trung điểm OH, R là trung điểm OA, dễ chứng minh M cố ddonhj, MR là đường trung bình tam giác OAH, từ đó suy ra MR//HA, mà HA vuông góc OH => MR vuông góc OH=> OMR vuông.

 MOR= ½ AOB= ADB= EDF

=> ΔDFE đồng dạng ΔOMR=> DFOM=DEOR=DBOA

=> ΔDFB đồng dạng ΔOMA(c.g.c)DFB=OMA (góc tương ứng)

=> mà DFB kề bù AFB; OMA kề bù AMH

AFB=AMHAFB=12AMB

Xét đường tròn (M;MA) có:

AMB là góc ở tâm chắn cung AB

AFB=12AMB (cmt)

=>AFB là góc nối tiếp chắn cung AB của đường tròn (M;MA)

Mà M, A cố định.

=> F luôn thuộc đường tròn (M;MA) cố định khi S di chuyển trên tia đối của tia AB.

image

Thảo luận

Lời giải 2 :

 

image
image

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK