2.3. Giao của mặt cầu với mặt phẳng
2.4. Giao của mặt cầu với đường thẳng
2.5. Công thức diện tích mặt cầu và thể tích hình cầu
2.6. Mặt cầu ngoại tiếp lăng trụ và hình chóp
4. Luyện tập Bài 2 Chương 2 Toán 12
4.1 Trắc nghiệm về Khái niệm về mặt cầu
Kí hiệu: \(S\left( {O;r} \right) = \left\{ {M|OM = r} \right\}.\)
Dây cung CD và đường kính AB.
Nếu điểm A nằm ngoài mặt cầu S(O;r) thì:
Cho mặt cầu S(O;r) tâm O bán kính r và mặt phẳng (P); H là hình chiếu vuông góc của O lên mặt phẳng (P).
Khi đó h=OH là khoảng cách từ O đến mặt phẳng (P).
Ghi nhớ: Điều kiện cần và đủ để mặt phẳng (P) tiếp xúc với mặt cầu S(O;r) tại điểm H là (P) vuông góc với bán kính OH tại điểm H đó.
Cho mặt cầu S(O;r) và đường thẳng ∆. Gọi H là chân đường vuông góc hạ từ O lên ∆, đặt h=OH. Ta có:
Ghi nhớ: Điều kiện cần và đủ để đường thẳng \(\Delta\) tiếp xúc với mặt cầu S(O;r) tại điểm H là \(\Delta\) vuông góc với bán kính OH tại điểm H đó.
Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = 3a, BC = 4a, SA = 12a và vuông góc với mặt đáy. Tính diện tích và thể tích của mặt cầu ngoại tiếp hình chóp S.ABCD.
Xét các tam giác SAB, SBC, SDC, SAC đều là những tam giác vuông, và có chung SC là cạnh huyền.
Vậy trung điểm I của SC chính là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
Xét tam giác ABC vuông tại B ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = 5a\).
Xét tam giác SAC vuông tại A ta có: \(SC = \sqrt {S{A^2} + A{C^2}} = 13a\).
Vậy bán kính mặt cầu ngoại tiếp khối chóp là: \(R=\frac{{13a}}{2}\).
Diện tích mặt cầu là: \(S = 4\pi {R^2}=169\pi a^2.\)
Thể tích khối cầu là: \(V=\frac{4}{3}\pi .R^3=\frac{2197}{6}\pi a^3.\)
Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện đều cạnh a.
Gọi H là tâm của tam giác đều BCD.
Dễ thấy A nằm trên trục của đường tròn ngoại tiếp ∆BCD.
Gọi O là tâm của mặt cầu ngoại tiếp ABCD thì O nằm trên AH.
Đặt OH=x (x>0)
Ta có:
\(BH = \frac{2}{3}BE = \frac{2}{3}a.\sin {60^0} = a.\frac{{\sqrt 3 }}{3}\)
\(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{3}} = a\sqrt {\frac{2}{3}}\)
\(OA = AH - x = a\sqrt {\frac{2}{3}} - x\)
\(BO = \sqrt {B{H^2} + H{O^2}} = \sqrt {\frac{{{a^2}}}{3} + {x^2}}\)
Mặt khác: \(OA = OB \Leftrightarrow a\sqrt {\frac{2}{3}} - x = \sqrt {\frac{{{a^2}}}{3} + {x^2}} \Leftrightarrow x = \frac{{a\sqrt 6 }}{{12}}\).
Vậy tâm O của mặt cầu ngoại tiếp nằm trên AH và cách (BCD) một khoảng \(OH=\frac{{a\sqrt 6 }}{{12}}.\)
Bán kính của mặt cầu là \(R=OA=a\sqrt {\frac{2}{3}} - \frac{{a\sqrt 6 }}{{12}} = \frac{{a\sqrt 6 }}{4}.\)
Xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện OABC có OA=a, OB=b,OC=c và OA,OB,OC đôi một vuông góc.
Gọi H là trung điểm của AB.
Dễ thấy H là tâm đường tròn ngoại tiếp ∆SAB.
Mặt phẳng trung trực của SC cắt trục đường tròn (SAB) tại O.
Ta có O chính là tâm mặt cầu ngoại tiếp tứ diện SABC.
Do OHSM là hình chữ nhật nên: \(MS=OH=\frac{1}{2}c\).
\(\begin{array}{l} R = SO = \sqrt {S{H^2} + H{O^2}} = \sqrt {{{\frac{{AB}}{4}}^2} + H{O^2}} \\ = \sqrt {{{\frac{{S{A^2} + SB}}{4}}^2} + H{O^2}} = \frac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}. \end{array}\)
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy là a, góc giữa AB’ với mặt đáy là 450. Tính diện tích mặt cầu ngoại tiếp lăng trụ.
\(B'B = AB.\tan {45^0} = a\).
Gọi O, O’ lần lượt là trọng tâm các tam giác đều ABC và A’B’C’.
Tâm mặt cầu ngoại tiếp khối lăng trụ là trung điểm I của OO’.
Do A'B'C' là tam giác đều nên \(O'C'=\frac{a \sqrt3}{3}.\)
\(IO'=\frac{1}{2}BB'=\frac{a}{2}.\)
Suy ra: \(R = IC' = \sqrt {IO{'^2} + O'C{'^2}} = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {21} }}{6}\).
Vậy diện tích mặt cầu là: \(S = 4\pi {R^2} = \frac{7}{3}\pi {a^2}\).
Những vật thể có dạng mặt cầu hay khối cầu hết sức quen thuộc trong cuộc sống hằng ngày từ vật thể nhỏ như quả bóng hay đến Trái đất đều là một khối cầu. Nội dung bài học sẽ giới thiệu đến các em khái niệm và các công thức tính diện tích Mặt cầu, thể tích Khối cầu cùng với đó là những bài tập minh họa có lời giải chi tiết sẽ giúp các em nắm được phương pháp giải bài tập ở dạng toán này.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Hình học 12 Cơ bản và Nâng cao.
Bài tập 2.22 trang 61 SBT Hình học 12
Bài tập 2.23 trang 61 SBT Hình học 12
Bài tập 1 trang 45 SGK Hình học 12 NC
Bài tập 2 trang 45 SGK Hình học 12 NC
Bài tập 3 trang 45 SGK Hình học 12 NC
Bài tập 4 trang 45 SGK Hình học 12 NC
Bài tập 5 trang 45 SGK Hình học 12 NC
Bài tập 6 trang 45 SGK Hình học 12 NC
Bài tập 7 trang 45 SGK Hình học 12 NC
Bài tập 8 trang 45 SGK Hình học 12 NC
Bài tập 9 trang 46 SGK Hình học 12 NC
Bài tập 10 trang 46 SGK Hình học 12 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK