Tìm số thực x, y thỏa mãn:
a) \(5x + y + 5xi = 2y - 1 + (x - y)i.\)
b) \(\left( { - x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x - 2y + 2} \right) + \left( {4x - y - 3} \right)i\)
a)
\(\begin{array}{l} 5x + y + 5xi = 2y - 1 + (x - y)i\\ \Leftrightarrow (3x + y) + 5xi = (2y - 1) + (x - y)i\\ \Leftrightarrow \left\{ \begin{array}{l} 3x + y = 2y - 1\\ 5x = x - y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - \frac{1}{7}.\\ y = \frac{4}{7}. \end{array} \right. \end{array}\)
b)
Ta có: \(\left( { - x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x - 2y + 2} \right) + \left( {4x - y - 3} \right)i\) khi:
\(\left\{ {\begin{array}{*{20}{c}} { - x + 2y = 4x - y - 3}\\ {2x + 3y + 1 = 3x - 2y + 2} \end{array}} \right.\)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {5x - 3y = 3}\\ {x - 5y = - 1} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {x = \frac{9}{{11}}}\\ {y = \frac{4}{{11}}} \end{array}} \right.\)
Tìm số phức z biết:
a) \(\left| z \right| = 5\) và \(z = \overline z\).
b) \(\left| z \right| = 4\) và \(z = -\overline z.\)
c) \(\left| z \right| = 6\) và phần thực của số phức z bằng ba lần phần ảo của z.
Gọi số phức z cần tìm là \(z=x+yi\) suy ra: \(\overline z = x - yi\)
a) Ta có: \(z = \overline z\) nên \(x + yi = x - yi \Leftrightarrow 2yi = 0 \Leftrightarrow y = 0.\)
Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2}} = 5 \Leftrightarrow x = \pm 5.\)
Vậy số phức cần tìm là z=5; z=-5.
b) Ta có: \(z = -\overline z\) nên \(x + yi = -x + yi \Leftrightarrow 2x = 0 \Leftrightarrow x= 0.\)
Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{y^2}} = 4 \Leftrightarrow y = \pm 4.\)
Vậy số phức z cần tìm là z=4i; z=-4i.
c) Phần thực của số phức z là x và phần ảo là y nên x=3y. Do đó ta có:
\(\begin{array}{l} \left\{ \begin{array}{l} x = 3y\\ \sqrt {{x^2} + {y^2}} = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {\left( {3y} \right)^2} + {y^2} = 36 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {y^2} = \frac{{18}}{5} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} y = \frac{{3\sqrt {10} }}{5};x = \frac{{9\sqrt {10} }}{5}\\ y = - \frac{{3\sqrt {10} }}{5};x = - \frac{{9\sqrt {10} }}{5} \end{array} \right. \end{array}\)
vậy ta có \(z = \frac{{9\sqrt {10} }}{5} + \frac{{3\sqrt {10} }}{5}i;\,\,z = - \frac{{9\sqrt {10} }}{5} - \frac{{3\sqrt {10} }}{5}i.\)
Trong chương trình phổ thông các lớp, các em đã quen với khái niệm bình phương của một số luôn luôn nhận được kết quả là một số không âm, hay số âm không có căn bậc hai. Từ thực tiễn tính toán và nhu cầu của các môn khoa học người ta đã cho ra đời con số i có bình phương bằng -1 là nền tảng của sự ra đời số phức. Nội dung bài học sẽ giới thiệu đến các em các khái niệm liên quan đến số phức và các tính chất của nó.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.
Bài tập 11 trang 191 SGK Toán 12 NC
Bài tập 12 trang 191 SGK Toán 12 NC
Bài tập 13 trang 191 SGK Toán 12 NC
Bài tập 14 trang 191 SGK Toán 12 NC
Bài tập 15 trang 191 SGK Toán 12 NC
Bài tập 16 trang 191 SGK Toán 12 NC
Bài tập 1 trang 189 SGK Toán 12 NC
Bài tập 2 trang 189 SGK Toán 12 NC
Bài tập 3 trang 189 SGK Toán 12 NC
Bài tập 4 trang 189 SGK Toán 12 NC
Bài tập 5 trang 190 SGK Toán 12 NC
Bài tập 6 trang 190 SGK Toán 12 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK