Toán 12 Bài 1: Số phức

Lý thuyết Bài tập

Tóm tắt bài

2.1. Các khái niệm về số phức

  • Số phức \(z = a + bi\) có phần thực là \(a\), phần ảo là \(b\) (\(a,b\in\mathbb{R}\) và \(i^2=-1\)).
  • Số phức bằng nhau \(a + bi = c + di \Leftrightarrow\) \(a=c\) và \(b=d.\)
  • Số phức \(z = a + bi\) được biểu diễn bới điểm \(M(a,b)\) trên mặt phẳng toạ độ.

  • Độ dài của vectơ  là môđun của số phức \(z\), kí hiệu là \(\left| z \right| = \overrightarrow {OM} = \sqrt {{a^2} + {b^2}} .\)

  • Số phức liên hợp của số phức \(z = a + bi\) là \(a-bi\) kí hiệu là \(\overline z = a - bi.\)

2.2. Một số tính chất cần lưu ý của số phức

  • Mỗi số thực là số phức có phần ảo bằng 0. Ta có \(\mathbb{R}\subset \mathbb{C}.\)
  • Số phức \(bi\)(\(b\in\mathbb{R}\)) được gọi là số thuần ảo (phần thực bằng 0).
  • Số \(i\) được gọi là đơn vị ảo.
  • Số phức viết dưới dạng \(z = a + bi(a,b\in\mathbb{R})\) gọi là dạng đại số của số phức.
  • Ta có:
    • ​\(\left| {\overline z } \right| = \left| z \right|\).
    • \(z = \overline z \Leftrightarrow z\) là số thực.
    • \(z = - \overline z \Leftrightarrow z\) là số ảo.

Ví dụ 1:

Tìm số thực x, y thỏa mãn:

a) \(5x + y + 5xi = 2y - 1 + (x - y)i.\)

b) \(\left( { - x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x - 2y + 2} \right) + \left( {4x - y - 3} \right)i\)

Lời giải: 

a) 

\(\begin{array}{l} 5x + y + 5xi = 2y - 1 + (x - y)i\\ \Leftrightarrow (3x + y) + 5xi = (2y - 1) + (x - y)i\\ \Leftrightarrow \left\{ \begin{array}{l} 3x + y = 2y - 1\\ 5x = x - y \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - \frac{1}{7}.\\ y = \frac{4}{7}. \end{array} \right. \end{array}\)

b) 

Ta có: \(\left( { - x + 2y} \right)i + \left( {2x + 3y + 1} \right) = \left( {3x - 2y + 2} \right) + \left( {4x - y - 3} \right)i\)  khi:

\(\left\{ {\begin{array}{*{20}{c}} { - x + 2y = 4x - y - 3}\\ {2x + 3y + 1 = 3x - 2y + 2} \end{array}} \right.\)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {5x - 3y = 3}\\ {x - 5y = - 1} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}} {x = \frac{9}{{11}}}\\ {y = \frac{4}{{11}}} \end{array}} \right.\)

Ví dụ 2: 

Tìm số phức z biết:

a) \(\left| z \right| = 5\) và \(z = \overline z\).

b) \(\left| z \right| = 4\) và \(z = -\overline z.\)

c) \(\left| z \right| = 6\) và phần thực của số phức z bằng ba lần phần ảo của z.

Lời giải:

Gọi số phức z cần tìm là \(z=x+yi\) suy ra: \(\overline z = x - yi\)

a) Ta có: \(z = \overline z\) nên \(x + yi = x - yi \Leftrightarrow 2yi = 0 \Leftrightarrow y = 0.\)

Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2}} = 5 \Leftrightarrow x = \pm 5.\)

Vậy số phức cần tìm là z=5; z=-5.

b) Ta có: \(z = -\overline z\) nên \(x + yi = -x + yi \Leftrightarrow 2x = 0 \Leftrightarrow x= 0.\)

Mà \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{y^2}} = 4 \Leftrightarrow y = \pm 4.\)

Vậy số phức z cần tìm là z=4i; z=-4i.

c) Phần thực của số phức z là x và phần ảo là y nên x=3y. Do đó ta có:

\(\begin{array}{l} \left\{ \begin{array}{l} x = 3y\\ \sqrt {{x^2} + {y^2}} = 6 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {\left( {3y} \right)^2} + {y^2} = 36 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3y\\ {y^2} = \frac{{18}}{5} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} y = \frac{{3\sqrt {10} }}{5};x = \frac{{9\sqrt {10} }}{5}\\ y = - \frac{{3\sqrt {10} }}{5};x = - \frac{{9\sqrt {10} }}{5} \end{array} \right. \end{array}\)

vậy ta có \(z = \frac{{9\sqrt {10} }}{5} + \frac{{3\sqrt {10} }}{5}i;\,\,z = - \frac{{9\sqrt {10} }}{5} - \frac{{3\sqrt {10} }}{5}i.\)

4. Luyện tập Bài 1 Chương 4 Toán 12

Trong chương trình phổ thông các lớp, các em đã quen với khái niệm bình phương của một số luôn luôn nhận được kết quả là một số không âm, hay số âm không có căn bậc hai. Từ thực tiễn tính toán và nhu cầu của các môn khoa học người ta đã cho ra đời con số i có bình phương bằng -1 là nền tảng của sự ra đời số phức. Nội dung bài học sẽ giới thiệu đến các em các khái niệm liên quan đến số phức và các tính chất của nó.

4.1 Trắc nghiệm về số phức

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

4.2 Bài tập SGK và Nâng Cao về số phức

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 11 trang 191 SGK Toán 12 NC

Bài tập 12 trang 191 SGK Toán 12 NC

Bài tập 13 trang 191 SGK Toán 12 NC

Bài tập 14 trang 191 SGK Toán 12 NC

Bài tập 15 trang 191 SGK Toán 12 NC

Bài tập 16 trang 191 SGK Toán 12 NC

Bài tập 1 trang 189 SGK Toán 12 NC

Bài tập 2 trang 189 SGK Toán 12 NC

Bài tập 3 trang 189 SGK Toán 12 NC

Bài tập 4 trang 189 SGK Toán 12 NC

Bài tập 5 trang 190 SGK Toán 12 NC

Bài tập 6 trang 190 SGK Toán 12 NC

5. Hỏi đáp về Bài 1 Chương 4 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK