Lý thuyết Bài tập

Tóm tắt bài

2.1. Khái niệm lũy thừa

a) Lũy thừa với số mũ nguyên

Cho \(n\) là một số nguyên dương.

  • Với \(a\) là số thực tùy ý, lũy thừa bậc \(n\) của \(a\) là tích của \(n\) thừa số \(a\): \({a^n} = \underbrace {a.a......a}_n\)
  • Với \(a\ne0\): 
    • ​\(a^0=1\)
    • ​\(a^{-n}=\frac{1}{a^n}\)

Trong biểu thức \(a^m\), ta gọi \(a\) là cơ số, số nguyên \(m\) là số mũ.

  • Chú ý: 
    • \(0^0\) và \(0^n\) không có nghĩa.
    • Lũy thừa với số mũ nguyên có các tihs chất tương tự của lũy thừa với số mũ nguyên dương.

b) Lũy thừa với số mũ hữu tỉ

Cho \(a\) là số thực dương và số hữu tỉ \(r=\frac{m}{n}\) trong đó \(m\in\mathbb{Z},n\in\mathbb{N},n\geq 2.\) Lũy thừa với số mũ \(r\) là số \(a^r\) xác đinh bởi: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).

c) Lũy thừa với số mũ thực

Cho \(a\) là một số dương, \(\alpha\) là một số vô tỉ:

Ta gọi giới hạn của dãy số \(\left( {{a^{{r_n}}}} \right)\) là lũy thừa của \(a\) với số mũ \(\alpha\), kí hiệu là \(a^{\alpha}.\)

\({a^\alpha } = \mathop {\lim }\limits_{n \to + \infty } {a^{{r_n}}}\) với \(a = \mathop {\lim }\limits_{n \to + \infty } {r_n}\).

2.2. Các tính chất quan trọng của lũy thừa

Với số thực \(a>0\) ta có các tính chất sau:

  • \(a^x.a^y=a^{x+y} \ \ \ x, y\in \mathbb{R}\)
  • \(\frac{a^x}{a^y}=a^{x-y} \ \ \ x, y \in \mathbb{R}\)
  • \((a^x)^y=a^{xy} \ \ \ x,y\in R\)
  • \(\sqrt[x]{a^y}=a^{\frac{y}{x}} \ \ \ x\in N, x\geq 2, y\in R\)
  • \((a.b)^x=a^x.b^x\)
  • \(\left ( \frac{a}{b} \right )^y=\frac{a^y}{b^y}\)

2.3. So sánh hai lũy thừa

Cho số thực \(a\):

  • Nếu \(a>1\) thì \(a^x > a^y\Leftrightarrow x>y\).
  • Nếu \(0 a^y\Leftrightarrow x

Ví dụ 1: 

Rút gọn biểu thức: \(A = \frac{{{a^{ - n}} + {b^{ - n}}}}{{{a^{ - n}} - {b^{ - n}}}} - \frac{{{a^{ - n}} - {b^{ - n}}}}{{{a^{ - n}} + {b^{ - n}}}}\left( {ab \ne 0;a \ne \pm b} \right)\)

Lời giải:

\(A = \frac{{{a^{ - n}} + {b^{ - n}}}}{{{a^{ - n}} - {b^{ - n}}}} - \frac{{{a^{ - n}} - {b^{ - n}}}}{{{a^{ - n}} + {b^{ - n}}}} = \frac{{{a^n} + {b^n}}}{{{a^n}{b^n}\left( {\frac{{{b^n} - {a^n}}}{{{a^n}{b^n}}}} \right)}} - \frac{{{b^n} - {a^n}}}{{{a^n}{b^n}\left( {\frac{{{a^n} + {b^n}}}{{{a^n}{b^n}}}} \right)}}\)

\(= \frac{{{{\left( {{a^n} + {b^n}} \right)}^2} - {{\left( {{b^n} - {a^n}} \right)}^2}}}{{\left( {{a^n} + {b^n}} \right)\left( {{b^n} - {a^n}} \right)}} = \frac{{4{a^n}{b^n}}}{{{b^{2n}} - {a^{2n}}}}\)

Ví dụ 2: 

Cho a,b là các số thực dương .Rút gọn biểu thức sau:

a) \(\left( {1 - 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} - {b^{\frac{1}{2}}}} \right)^2}\)

b) \(\frac{{{a^{\frac{1}{4}}} - {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} - {a^{\frac{5}{4}}}}} - \frac{{{b^{ - \frac{1}{2}}} - {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ - \frac{1}{2}}}}}\)

Lời giải:

a) \(\left( {1 - 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} - {b^{\frac{1}{2}}}} \right)^2} = {\left( {1 - \sqrt {\frac{a}{b}} } \right)^2}:\left( {\sqrt a - \sqrt b } \right)\)

\(= \frac{{{{\left( {\sqrt b - \sqrt a } \right)}^2}}}{b}.\frac{1}{{{{\left( {\sqrt a - \sqrt b } \right)}^2}}} = \frac{1}{b}\)

b) \(\frac{{{a^{\frac{1}{4}}} - {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} - {a^{\frac{5}{4}}}}} - \frac{{{b^{ - \frac{1}{2}}} - {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ - \frac{1}{2}}}}} = \frac{{{a^{\frac{1}{4}}}\left( {1 - {a^2}} \right)}}{{{a^{\frac{1}{4}}}\left( {1 - a} \right)}} - \frac{{{b^{ - \frac{1}{2}}}\left( {1 - {b^2}} \right)}}{{{b^{ - \frac{1}{2}}}\left( {{b^2} - 1} \right)}} = 1 + a + 1 = a + 2\)

Ví dụ 3: 

Viết dưới dạng lũy thừa với số mũ hữu tỷ các biểu thức sau:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}}\quad \left( {a > 0} \right)\)

Lời giải:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}} = \left\{ {{{\left[ {{{\left( {{2^{\frac{1}{2}}}.2} \right)}^{\frac{1}{3}}}.2} \right]}^{\frac{1}{5}}}} \right\}\)

\(= {\left[ {{{\left( {{2^{\frac{3}{2}}}} \right)}^{\frac{1}{3}}}.2} \right]^{\frac{1}{5}}} = {\left( {{2^{\frac{1}{2}}}.2} \right)^{\frac{1}{5}}} = {2^{\frac{3}{2}\frac{1}{5}}} = {2^{\frac{3}{{10}}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}} = {\left\{ {{{\left[ {{{\left( {{a^{\frac{3}{2}}}} \right)}^{\frac{1}{2}}}a} \right]}^{\frac{1}{2}}}.a} \right\}^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}}\)

\(= {\left[ {{{\left( {{a^{\frac{3}{4} + 1}}} \right)}^{\frac{1}{2}}}.a} \right]^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{8} + 1}}} \right)^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}} = \frac{{{a^{\frac{{15}}{{16}}}}}}{{{a^{\frac{{11}}{{16}}}}}} = {a^{\frac{1}{4}}}\)

Ví dụ 4:

Cho a là số thực dương, đơn giản các biểu thức sau:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\)

b) \(\frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

Lời giải:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}{\left( {{a^{ - 1}}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}{a^{1 - \sqrt 2 }} = a\)

b) \(\frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1 = \frac{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)\left( {{a^{\sqrt 2 }} + {b^{\sqrt 3 }}} \right)}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

\(= \frac{{{a^{\sqrt 2 }} + {b^{\sqrt 3 }} + {a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}} = \frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\)

Ví dụ 5:

Không dùng máy tính bỏ túi, hãy so sánh các cặp số sau:

a) \(\sqrt[4]{{13}}\; \vee \;\sqrt[5]{{23}}\)

b) \({\left( {\frac{1}{3}} \right)^{\sqrt 3 }}\; \vee \;{\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)

Lời giải:

a) Ta có: \(\left\{ \begin{array}{l} \sqrt[4]{{13}} = \sqrt[{20}]{{{{13}^5}}} = \sqrt[{20}]{{371.293}}\\ \sqrt[5]{{23}} = \sqrt[{20}]{{{{23}^4}}} = \sqrt[{20}]{{279.841}} \end{array} \right. \Rightarrow \sqrt[4]{{13}} > \sqrt[5]{{23}}\)

b) Ta có: \(\sqrt 3 > \sqrt 2 \Rightarrow {\left( {\frac{1}{3}} \right)^{\sqrt 3 }} < {\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)

4. Luyện tập Bài 1 Chương 2 Toán 12

Trong phạm vi bài học HOCTAP247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về lũy thừa, tính chất cơ bản của lũy thừa. Đây là một dạng toán nền tảng không chỉ trong phạm vi hàm số mũ mà còn được ứng dụng trong việc giải phương trình, chứng minh bất đẳng thức,....các em cần tìm hiểu thêm.

4.1 Trắc nghiệm về lũy thừa

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 12 Chương 2 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online 

4.2 Bài tập SGK và Nâng Cao về lũy thừa

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 2 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 11 trang 78 SGK Toán 12 NC

Bài tập 12 trang 81 SGK Toán 12 NC

Bài tập 13 trang 81 SGK Toán 12 NC

Bài tập 14 trang 81 SGK Toán 12 NC

Bài tập 15 trang 81 SGK Toán 12 NC

Bài tập 16 trang 81 SGK Toán 12 NC

Bài tập 17 trang 81 SGK Toán 12 NC

Bài tập 18 trang 81 SGK Toán 12 NC

Bài tập 19 trang 82 SGK Toán 12 NC

Bài tập 20 trang 82 SGK Toán 12 NC

Bài tập 21 trang 82 SGK Toán 12 NC

Bài tập 22 trang 82 SGK Toán 12 NC

5. Hỏi đáp về Bài 1 Chương 2 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK