Dãy số (un) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = a}\\{{u_{n + 1}} = {u_n}.q}\end{array}} \right.,{\rm{ }}n \in {N^*}\) gọi là cấp số nhân; \(q\) gọi là công bội.
\( \bullet \) Số hạng thứ n được cho bởi công thức: \({u_n} = {u_1}{q^{n - 1}}\).
\( \bullet \) Ba số hạng \({u_k},{u_{k + 1}},{u_{k + 2}}\) là ba số hạng liên tiếp của cấp số nhân khi và chỉ khi \(u_{k + 1}^2 = {u_k}.{u_{k + 2}}\).
\( \bullet \) Tổng \(n\) số hạng đầu tiên \({S_n}\) được xác định bởi công thức :
\({S_n} = {u_1} + {u_2} + ... + {u_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\)
Phương pháp:
\( \bullet \) Dãy số \(({u_n})\) là một cấp số nhân \( \Leftrightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = q\) không phụ thuộc vào n và \(q\) là công bội.
\( \bullet \) Ba số \(a,b,c\) theo thứ tự đó lập thành cấp số nhân \( \Leftrightarrow ac = {b^2}\).
\( \bullet \) Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua \({u_1}\) và \(q\).
Cho cấp số nhân (un) có các số hạng khác không, tìm \({u_1}\) biết:
a) \(\left\{ {\begin{array}{*{20}{c}}{{u_1} + {u_2} + {u_3} + {u_4} = 15}\\{u_1^2 + u_2^2 + u_3^2 + u_4^2 = 85}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 11}\\{{u_1} + {u_5} = \frac{{82}}{{11}}}\end{array}} \right.\)
a) Ta có: \(\left\{ \begin{array}{l}{u_1}(1 + q + {q^2} + {q^3}) = 15\\u_1^2\left( {1 + {q^2} + {q^4} + {q^6}} \right) = 85\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\frac{{{q^4} - 1}}{{q - 1}} = 15\\u_1^2\frac{{{q^8} - 1}}{{{q^2} - 1}} = 85\end{array} \right.\)
\( \Rightarrow {\left( {\frac{{{q^4} - 1}}{{q - 1}}} \right)^2}\left( {\frac{{{q^2} - 1}}{{{q^8} - 1}}} \right) = \frac{{45}}{{17}} \Leftrightarrow \frac{{({q^4} - 1)(q + 1)}}{{(q - 1)({q^4} + 1)}} = \frac{{45}}{{17}} \Leftrightarrow \left[ \begin{array}{l}q = 2\\q = \frac{1}{2}\end{array} \right.\)
Từ đó ta tìm được \({u_1} = 1,{u_1} = 8\).
b) Ta có: \(\left\{ \begin{array}{l}{u_1}\left( {1 + q + {q^2} + {q^3} + {q^4}} \right) = 11\\{u_1}(1 + {q^4}) = \frac{{82}}{{11}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}q(1 + q + {q^2}) = \frac{{39}}{{11}}\\{u_1}(1 + {q^4}) = \frac{{82}}{{11}}\end{array} \right.\)
\( \Rightarrow \frac{{{q^4} + 1}}{{{q^3} + {q^2} + q}} = \frac{{82}}{{39}} \Leftrightarrow q = 3,q = \frac{1}{3}\).
Cho cấp số nhân \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_4} = \frac{2}{{27}}\\{u_3} = 243{u_8}\end{array} \right.\).
a) Viết năm số hạng đầu của cấp số.
b) Tính tổng 10 số hạng đầu của cấp số.
c) Số \(\frac{2}{{6561}}\) là số hạng thứ bao nhiêu của cấp số?
Gọi \(q\) là công bội của cấp số. Theo giả thiết ta có:
\(\left\{ \begin{array}{l}{u_1}{q^3} = \frac{2}{{27}}\\{u_1}{q^2} = 243.{u_1}{q^7}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} = \frac{2}{{27}}\\{q^5} = \frac{1}{{243}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = \frac{1}{3}\\{u_1} = 2\end{array} \right.\)
a) Năm số hạng đầu của cấp số là:\({u_1} = 2,{u_2} = \frac{2}{3},{u_3} = \frac{2}{9};{u_4} = \frac{2}{{27}},{u_5} = \frac{2}{{81}}\).
b) Tổng 10 số hạng đầu của cấp số
\({S_{10}} = {u_1}\frac{{{q^{10}} - 1}}{{q - 1}} = 2.\frac{{{{\left( {\frac{1}{3}} \right)}^{10}} - 1}}{{\frac{1}{3} - 1}} = 3\left[ {1 - {{\left( {\frac{1}{3}} \right)}^{10}}} \right] = \frac{{59048}}{{19683}}\).
c) Ta có: \({u_n} = \frac{2}{{{3^{n - 1}}}} \Rightarrow {u_n} = \frac{2}{{6561}} \Leftrightarrow {3^{n - 1}} = 6561 = {3^8} \Rightarrow n = 9\)
Vậy \(\frac{2}{{6561}}\) là số hạng thứ 9 của cấp số.
Vấn đề 3: Tìm điều kiện để dãy số lập thành cấp số nhân
Phương pháp: \(a,b,c\) theo thứ tự đó lập thành CSN \( \Leftrightarrow ac = {b^2}\).
Ta có: \(1,{x^2},6 - {x^2}\) lập thành cấp số nhân \( \Leftrightarrow {x^4} = 6 - {x^2} \Leftrightarrow x = \pm \sqrt 2 .\)
Tìm \(x,y\) biết:
a) Các số \(x + 5y,5x + 2y,8x + y\) lập thành cấp số cộng và các số
\({\left( {y - 1} \right)^2},xy - 1,{\left( {x + 1} \right)^2}\) lập thành cấp số nhân.
b) Các số \(x + 6y,5x + 2y,8x + y\) lập thành cấp số cộng và các số \(x + \frac{5}{3}y,y - 1,2x - 3y\) lập thành cấp số nhân.
a) Ta có hệ: \(\left\{ \begin{array}{l}x + 5y + 8x + y = 2(5x + 2y)\\{(x + 1)^2}{(y - 1)^2} = {(xy - 1)^2}\end{array} \right.\) giải hệ này ta tìm được
\((x;y) = \left( { - \sqrt 3 ; - \frac{{\sqrt 3 }}{2}} \right);\left( {\sqrt 3 ;\frac{{\sqrt 3 }}{2}} \right)\).
b) Ta có hệ: \(\left\{ \begin{array}{l}x + 6y + 8x + y = 2(5x + 2y)\\(x + \frac{5}{3}y)(2x - 3y) = {(y - 1)^2}\end{array} \right.\) giải hệ này ta tìm được
\((x;y) = \left( { - 3; - 1} \right);\left( {\frac{3}{8};\frac{1}{8}} \right)\).
Cấp số nhân là một dãy số có tính chất đặc biệt. Bài giảng này sẽ cung cấp cho các em khái niệm cấp số nhân và các dạng toán liên quan, cùng với những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung phần này.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 3 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Tìm \(m\) để phương trình \({x^3} - 3m{x^2} + 4mx + m - 2 = 0\) có ba nghiệm lập thành cấp số nhân.
Câu 6 - Câu 16: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 3 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 32 trang 121 SGK Toán 11 NC
Bài tập 33 trang 121 SGK Toán 11 NC
Bài tập 34 trang 121 SGK Toán 11 NC
Bài tập 35 trang 121 SGK Toán 11 NC
Bài tập 36 trang 121 SGK Toán 11 NC
Bài tập 37 trang 121 SGK Toán 11 NC
Bài tập 38 trang 121 SGK Toán 11 NC
Bài tập 39 trang 122 SGK Toán 11 NC
Bài tập 40 trang 122 SGK Toán 11 NC
Bài tập 41 trang 122 SGK Toán 11 NC
Bài tập 42 trang 122 SGK Toán 11 NC
Bài tập 43 trang 122 SGK Toán 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK