Định lí: \({(a + b)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \)
\( = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Trong khai triển Newton \({(a + b)^n}\) có các tính chất sau
VD: Số hạng thứ nhất \({T_1} = {T_{0 + 1}} = C_n^0{a^n}\), số hạng thứ k: \({T_{(k - 1) + 1}} = C_n^{k - 1}{a^{n - k + 1}}{b^{k - 1}}\)
Ta có : \({(1 + x)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 + ... + {x^n}C_n^n\)
Từ khai triển này ta có các kết quả sau:
Xác định hệ số của số hạng chứa \({x^m}\) trong khai triển:
\({\left( {a{x^p} + b{x^q}} \right)^n}\) với \(x > 0\) (\(p,q\) là các hằng số khác nhau).
Ta có:
\({\left( {a{x^p} + b{x^q}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left( {a{x^p}} \right)}^{n - k}}{{\left( {b{x^q}} \right)}^k}} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}{x^{np - pk + qk}}} \)
Số hạng chứa \({x^m}\) ứng với giá trị \(k\) thỏa: \(np - pk + qk = m\).
Từ đó tìm \(k = \frac{{m - np}}{{p - q}}\)
Vậy hệ số của số hạng chứa \({x^m}\) là: \(C_n^k{a^{n - k}}.{b^k}\) với giá trị \(k\) đã tìm được ở trên.
Nếu \(k\) không nguyên hoặc \(k > n\) thì trong khai triển không chứa \({x^m}\), hệ số phải tìm bằng 0.
Chú ý: Xác định hệ số của số hạng chứa \({x^m}\) trong khai triển
\(P\left( x \right) = {\left( {a + b{x^p} + c{x^q}} \right)^n}\) được viết dưới dạng \({a_0} + {a_1}x + ... + {a_{2n}}{x^{2n}}\).
Ta làm như sau:
Chú ý: Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn
Ta làm như sau:
Tìm hệ số x16 trong khai triền ( x2-2x )10.
Ta có: \({\left( {{x^2} - 2x} \right)^{10}} = \,{\sum\limits_{k = 0}^{10} {C_{10}^k{x^2})} ^{10 - k}}{\left. { - 2x} \right)^k}\)
\(= \,\sum\limits_{k = 0}^{10} {C_{10}^k{x^{20 - 2k}}{x^k}} {\left. { - 2} \right)^k} = \,\sum\limits_{k = 0}^{10} {C_{10}^k{x^{20 - k}}} {\left. { - 2} \right)^k}\)
Ta chọn: 20 - k= 16 \(\Leftrightarrow \,k = 4\)
=> Hệ số x16 trong khai triển là \(C_{10}^4 = 3360\)
Biết hệ số của x2 trong khai triển của (1-3x)n là 90. Tìm n.
Với số thực \(x \ne 0\) và với mọi số tự nhiên \(n \ge 1\), ta có:
\({(1 - 3x)^n} = \,{[1 - (3x)]^n} = \,\sum\limits_{k = 0}^n {C_n^k} {(1)^{n - k}}{( - 3)^k}{x^k}\)
Suy ra hệ số của x2 trong khai triển này là \({3^2}C_n^2\). Theo giả thiết, ta có:
\({3^2}C_n^2\) = 90 => \(C_n^2\, = 10\)
Từ đó ta có: \(\frac{{n!}}{{2!(n - 2)!}} = 10\, \Leftrightarrow \,n(n - 1)\, = \,20\)
\(\Leftrightarrow \,{n^2}\, - \,n = \,20\, \Leftrightarrow \,n = \, - 4\) ( loại) hoặc n= 5
Đáp số: n= 5
Tìm số hạng không chứa x trong các khai triển \(f(x) = {\left( {x - \frac{2}{x}} \right)^{12}}{\rm{ (}}x \ne 0).\)
Ta có: \(f(x) = {(x - 2.{x^{ - 1}})^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{x^{12 - k}}.{{( - 2{x^{ - 1}})}^k}} \)
\(\sum\limits_{k = 0}^{12} {C_{12}^k{{( - 2)}^k}{x^{12 - 2k}}} \)
Số hạng không chứa \(x\) ứng với giá trị \(k\) thỏa mãn: \(12 - 2k = 0\)
\( \Leftrightarrow k = 6 \Rightarrow \) số hạng không chứa \(x\) là: \(C_{12}^6{.2^6} = 59136\).
Xác định hệ số của \({x^4}\) trong khai triển sau: \(f(x) = {(3{x^2} + 2x + 1)^{10}}\).
\(f\left( x \right) = {\left( {1 + 2x + 3{x^2}} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k} {\left( {2x + 3{x^2}} \right)^k}\)
\( = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {(2x)^{k - i}}.{(3{x^2})^i} = \sum\limits_{k = 0}^{10} {C_{10}^k} \sum\limits_{i = 0}^k {C_k^i} {2^{k - i}}{.3^i}{x^{k + i}}\)
với\(0 \le i \le k \le 10\).
Do đó \(k + i = 4\) với các trường hợp \(i = 0,k = 4\) hoặc \(i = 1,k = 3\) hoặc \(i = k = 2\).
Vậy hệ số chứa \({x^4}\): \({2^4}C_{10}^4.C_4^0 + {2^2}{3^1}C_{10}^3.C_3^1 + {3^2}C_{10}^2.C_2^2 = 8085\).
Nội dung bài học sẽ giới thiệu đến các em khái niệm Nhị thức Niu-tơn cùng các dạng bài tập liên quan. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng làm chủ nội dung bài học.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 2 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Viết số hạng thứ \(k + 1\) trong khai triển \(f(x) = {\left( {2x + \frac{1}{x}} \right)^{20}}.\)
Câu 8- Câu 21: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 2 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 2.36 trang 79 SBT Toán 11
Bài tập 2.37 trang 79 SBT Toán 11
Bài tập 2.38 trang 79 SBT Toán 11
Bài tập 2.39 trang 79 SBT Toán 11
Bài tập 17 trang 67 SGK Toán 11 NC
Bài tập 18 trang 67 SGK Toán 11 NC
Bài tập 19 trang 67 SGK Toán 11 NC
Bài tập 20 trang 67 SGK Toán 11 NC
Bài tập 21 trang 67 SGK Toán 11 NC
Bài tập 22 trang 67 SGK Toán 11 NC
Bài tập 23 trang 67 SGK Toán 11 NC
Bài tập 24 trang 67 SGK Toán 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK