Toán 11 Bài 2: Hoán vị - Chỉnh hợp - Tổ hợp

Lý thuyết Bài tập

Tóm tắt bài

1.1. Giai thừa

a) Định nghĩa 

Với mọi số tự nhiên dương\(n\), tích \(1.2.3....n\) được gọi là \(n\) - giai thừa và kí hiệu \(n!\). Vậy \(n! = 1.2.3...n\).

Ta quy ước \(0! = 1\).

b) Tính chất

\(\begin{array}{l}*{\rm{ }}n! = n(n - 1)!\\*{\rm{ }}n! = n(n - 1)(n - 2)...(n - k - 1).k!\end{array}\).         

1.2. Hoán vị

a) Định nghĩa 

Cho tập \(A\) gồm \(n\) phần tử (\(n \ge 1\)). Khi sắp xếp \(n\) phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập A.

Kí hiệu số hoán vị của n phần tử là \({P_n}\).

b) Số hoán vị của tập n phần tử

Định lí: Ta có \({P_n} = n!\)

1.3. Chỉnh hợp

a) Định nghĩa 

Cho tập A gồm n phần tử và số nguyên \(k\) với \(1 \le k \le n\). Khi lấy \(k\) phần tử của A và sắp xếp chúng theo một thứ tự ta được một chỉnh hợp chập \(k\) của \(n\) phần tử của A.

b) Số chỉnh hợp

Kí hiệu \(A_n^k\) là số chỉnh hợp chập \(k\) của \(n\) phần tử

Định lí: Ta có \(A_n^k = \frac{{n!}}{{(n - k)!}}\).

1.4. Tổ hợp

a) Định nghĩa 

Cho tập A có n phần tử và số nguyên k với \(1 \le k \le n\). Mỗi tập con của A có k phần tử được gọi là một tổ hợp chập k của n phần tử của A.

b) Số tổ hợp

Kí hiệu \(C_n^k\) là số tổ hợp chập k của n phần tử.

Định lí:

Ta có: \(C_n^k = \frac{{n!}}{{(n - k)!k!}}\).

c) Tính chất của các số \(C_n^k\)

Tính chất 1: \(C_n^k = C_n^{n - k}\)  với \(0 \le k \le n.\)

Tính chất 2: (Công thức Pa-xcan)

\(C_{n - 1}^{k - 1} + C_{n - 1}^k = C_n^k\) với \(1 \le k < n.\)

Ví dụ 1:

Sắp xếp 5 người vào một băng ghế có 5 chỗ. Hỏi có bao nhiêu cách.

Hướng dẫn giải:

Mỗi cách đổi chỗ 1 trong 5 người trên băng ghế là 1 hoán vị.

Vậy có P5 = 5! = 120 (cách).

Ví dụ 2:

Từ tập hợp X= {0; 1; 2; 3; 4; 5} có thể lập được mấy số tự nhiên có 4 chữ số khác nhau.

Hướng dẫn giải:

Gọi A= \(\overline {{a_1}{a_2}{a_3}{a_4}}\) là số cần lập với \({a_1} \ne 0\) và a1, a2, a3, a4 phân biệt.

  • Chữ số \({a_1} \ne 0\) nên có 5 cách chọn a1.
  • Chọn 3 trong số 5 chữ số còn lại để sắp xếp vào 3 vị trí có \(A_5^3\) cách.

Vậy có 5.\(A_5^3\) = 300 số có thể lập từ tập hợp X.

Ví dụ 3:  

Có 10 cuố sách toán khác nhau. Chọn ra 4 cuốn hỏi có bao nhiêu cách.

Hướng dẫn giải:

Mỗi cách chọn ra 4 trong số 10 cuốn sách là một tổ hợp chập 4 của 10.

Vậy có \(C_{10}^4\) = 210 (cách chọn).

Ví dụ 4:

Có bao nhiêu cách xếp \(5\) cuốn sách Toán, \(6\) cuốn sách Lý và \(8\) cuốn sách Hóa lên một kệ sách sao cho các cuốn sách cùng một môn học thì xếp cạnh nhau, biết các cuốn sách đôi một khác nhau.

Hướng dẫn giải:

Ta xếp các cuốn sách cùng một bộ môn thành một nhóm

Trước hết ta xếp 3 nhóm lên kệ sách chúng ta có: \(3! = 6\) cách xếp

Với mỗi cách xếp 3 nhóm đó lên kệ ta có \(5!\) cách hoán vị các cuốn sách Toán, \(6!\) cách hoán vị các cuốn sách Lý và \(8!\) cách hoán vị các cuốn sách Hóa

Vậy theo quy tắc nhân có tất cả: \(6.5!.6!.8!\) cách xếp

Ví dụ 5: 

Một nhóm có 5 nam và 3 nữ. Chọn ra 3 người sao cho trong đó có ít nhất 1 nữ. Hỏi có bao nhiêu cách.

Hướng dẫn giải:

  • Trường hợp 1: Chọn 1 nữ và 2 nam.
    • Chọn 1 trong 3 nữ có 3 cách.
    • Chọn 2 trong 5 nam có \(C_5^2\) cách.

Suy ra có 3\(C_5^2\) cách chọn

  • Trường hợp 2: Chọn 2 nữ và 1 nam.
    • Chọn 2 trong 3 nữ có \(C_3^2\) cách.
    • Chọn 1 trong 5 nam có 5 cách.

Suy ra có 5\(C_3^2\) cách chọn.

Trường hợp 3: chọn cả 3 nữ, có 1 cách.

Vậy có tất cả:  3\(C_5^2\) +  5\(C_3^2\) + 1 = 46 (cách).

3. Luyện tập Bài 2 chương 2 giải tích 11

Thông qua nội dung bài học các em sẽ nắm được khái niệm và phân biệt được sự khác nhau của Hoán vị, Tổ hợp,Chỉnh hợp. Cùng với một số bài tập điển hình có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng nắm vững được nội dung bài học.

3.1 Trắc nghiệm về Hoán vị Chỉnh hợp Tổ hợp

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 2 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu7 - Câu 19: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK và Nâng Cao về Hoán vị Chỉnh hợp Tổ hợp

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 2 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.

Bài tập 5 trang 62 SGK Toán 11 NC

Bài tập 6 trang 62 SGK Toán 11 NC

Bài tập 7 trang 62 SGK Toán 11 NC

Bài tập 8 trang 62 SGK Toán 11 NC

Bài tập 9 trang 63 SGK Toán 11 NC

Bài tập 10 trang 63 SGK Toán 11 NC

Bài tập 11 trang 63 SGK Toán 11 NC

Bài tập 12 trang 63 SGK Toán 11 NC

Bài tập 13 trang 63 SGK Toán 11 NC

Bài tập 14 trang 63 SGK Toán 11 NC

Bài tập 15 trang 64 SGK Toán 11 NC

Bài tập 16 trang 64 SGK Toán 11 NC

4. Hỏi đáp về bài 2 chương 2 giải tích 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK