Khi quay một tam giác vuông AOC vòng quanh cạnh OA, ta được một hình nón. Khi đó:
Cạnh OC quét nên đáy của hình nón. là một đường tròn tâm O bán kính OC
Cạnh AC quét nên một một mặt xung quanh của hình nón. AC gọi là đường sinh của hình nón.
Công thức: \(S_{xq}=\pi rl\)
Trong đó: r là bán kính của đáy; l là độ dài đường sinh
Vậy ta suy ra công thức diện tích toàn phần:
\(S_{tp}=S_{xq}+S_{day}=\pi rl+\pi r^2\)
Bằng thực nghiệm, ta có thể tích hình nón là: \(V=\frac{1}{3}\pi r^2h\)
Khi cắt hình nón bởi một mặt phẳng song song với mặt đáy, ta được một hình nón cụt.
Ta có các công thức sau:
\(S_{xq}=\pi (r_1+r_2)l\)
\(V=\frac{1}{3}\pi h(r_{1}^{2}+r_{2}^{2}+r_1r_2)\)
Bài 1: Cho hình nón như hình bên:
Biết rằng đáy là hình tròn có bán kính bằng \(3cm\), đường sinh có độ dài là \(5cm\). Hãy tính diện tích xung quanh, diện tích toàn phần và thể tích của hình nón.
Hướng dẫn:
Ta có: \(S_{xq}=\pi rl=\pi .3.5=15\pi (cm^2)\)
Diện tích đáy là: \(S_{day}=\pi R^2=\pi.3^2=9\pi (cm^2)\)
Vậy diện tích toàn phần của hình nón là: \(S{tp}=S{xq}+S_{day}=15\pi+9\pi=24\pi (cm^2)\)
Muốn tính thể tích hình nón, ta cần biết chiều cao hạ từ đỉnh xuống đáy (hay khoảng cách từ đỉnh đến tâm đường tròn)
Xét tam giác AOB vuông tại O. Áp dụng định lí Pi ta go vào tam giác AOB, ta có: \(AO=\sqrt{AB^2-OB^2}=\sqrt{5^2-3^2}=4(cm)\)
Vậy thể tích hình chóp là: \(V=\frac{1}{3}S_{day}.AO=\frac{1}{3}.9 \pi. 4=12\pi (cm^3)\)
Bài 2: Hình bên mô tả chiếc nón của một chú hề được tạo bởi hình chóp và 2 hình tròn đồng tâm. Biêt rằng hình tròn nhỏ bỏ trống để chú hề có thể đội được nón.
Cho \(AB=10cm; OB=6cm, OC=9cm\). Tính diện tích để làm chiếc nón ấy
Hướng dẫn: Ta thấy chiếc nón chính là diện tích toàn phần của hình nón và phần diện tích hình tròn lớn trừ diện tích hình tròn nhỏ.
Lần lượt tính các giá trị đó, ta có:
\(S{xq}=\pi rl=\pi .6.10=60 \pi (cm^2)\)
\(S_{(O;OC)}=\pi R^2=\pi.9^2=81 \pi (cm^2)\)
\(S_{(O;OB)}=\pi r^2=\pi.6^2=36 \pi (cm^2)\)
Diện tích phần còn lại (phần đáy đã chừa đường tròn nhỏ): \(81 \pi-36\pi=45\pi (cm^2)\)
Vậy diện tích để làm chiếc nón là: \(45\pi+60 \pi =105 \pi (cm^2)\)
Bài 3: Cho hình nón cụt như hình vẽ:
Biết rằng bán kính của đáy nhỏ \(r=3cm\), bán kính đáy lớn \(R=6cm\), độ dài \(AB=4cm\). Hãy tính diện tích xung quanh và thể tích của hình nón cụt đã cho.
Hướng dẫn: Diện tích xung quanh hình nón cụt là: \(S_{xq}=\pi (r+R)l=\pi (3+6).4=36\pi (cm^2)\)
Để tính đường cao của nón cụt, ta có hình vẽ sau:
Áp dụng định lí Pytago vào tam giác AHB vuông tại H, ta có: \(AH=\sqrt{AB^2-BH^2}=\sqrt{AB^2-(R-r)^2}=\sqrt{16-1}=\sqrt{15}(cm)\)
Thể tích của hình nón cụt đã cho là: \(V=\frac{1}{3}\pi AH (r^2+R^2+rR)=\frac{1}{3}.\pi.\sqrt{15}(3^2+6^2+3.6)=21\pi \sqrt{15}(cm^3)\)
Bài 1: Hình bên là hình được ghép bởi một hình nón và một hình trụ, để hai hình này có thể tích bằng nhau thì chiều cao của hình nón phải bằng bao nhiêu lần chiều cao của hình trụ?
Hướng dẫn: Do thể tích của hình nón là: \(V=\frac{1}{3}\pi r^2h\)
Thể tích hình trụ là \(V=\pi r^2h\) nên tỷ lệ của chúng sẽ là 3
Bài 2: Một hình nón được một mặt phẳng cắt ngang song song với đáy tại trung điểm của đường cao, hình nón được chia ra thành một hình nón cụt và một hình nón. Tỷ lệ thể tích của hình nón mới và hình nón cụt vừa tạo ra là bao nhiêu?
Hướng dẫn: Ta sẽ quay lại công thức tính thể tích của mỗi hình để suy ra tỷ lệ:
Ở hình bên, ta có P là trung điểm của AO, C là trung điểm của AC.
Dễ dàng suy ra được trong hình chóp cụt, đáy lớn có bán kính gấp đôi đáy bé.
\(V_{chop}=\frac{1}{3}\pi r^2h(dvtt)\)
\(V_{chopcut}=\frac{1}{3}\pi h (r^2+4r^2+2r^2)=\frac{7}{3}\pi hr^2(dvtt)\)
Vậy, tỷ lệ đề bài yêu cầu đó là \(\frac{1}{7}\)
3. Luyện tập Bài 2 Chương 4 Hình học 9
Qua bài giảng Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như:
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 9 Chương 4 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Một hình nón có bán kính đáy là \(5cm\), đường sinh bằng \(13cm\). Thể tích hình nón đã cho là:
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 9 Chương 4 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 2
Bài tập 15 trang 166 SBT Toán 9 Tập 2
Bài tập 16 trang 167 SBT Toán 9 Tập 2
Bài tập 17 trang 167 SBT Toán 9 Tập 2
Bài tập 18 trang 167 SBT Toán 9 Tập 2
Bài tập 19 trang 167 SBT Toán 6 Tập 1
Bài tập 20 trang 168 SBT Toán 9 Tập 2
Bài tập 21 trang 168 SBT Toán 9 Tập 2
Bài tập 22 trang 168 SBT Toán 9 Tập 2
Bài tập 23 trang 168 SBT Toán 9 Tập 2
Bài tập 24 trang 169 SBT Toán 9 Tập 2
Bài tập 25 trang 169 SBT Toán 9 Tập 2
Bài tập 26 trang 169 SBT Toán 9 Tập 2
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK