Một bất phương trình với ẩn x có dạng:
A(x) > B(x) hoặc A(x) < B(x), \(A(x) \ge B(x),A(x) \le \,B(x)\).
Trong đó vế trái A(x) và vế phải A(x) và vế phải B(x) là hai biểu thức của cùng một biến x.
Tập hợp tất cả các nghiệm của một bất phương trình được gọi là tập nghiệm của bất phương trình đó.
Khi bài toán yêu cầu giải một bất phương trình, ta phải tìm tập nghiệm của bất phương trình đó.
Ví dụ 1: Cho bất phương trình: \({x^2} - 4x < 3x\)
Kiểm tra xem các giá trị sau của x có phải là nghiệm của bất phương trình hay không?
a. x = -2 b. x = 1 c. x = 3
Giải
a. Thay x =-2 và bất phương trình, ta được:
\({( - 2)^2} - 4( - 2) < 3( - 2) \Leftrightarrow 4 + 8 < - 6 \Leftrightarrow 12 < - 6,\) mâu thuẫn.
Vậy x=-2 không phải là nghiệm của bất phương trình.
b. Thay x =1 và bất phương trình, ta được:
\({1^2} - 4.1 < 3.1 \Leftrightarrow 1 - 4 < 3 \Leftrightarrow - 3 < 3,\) luôn đúng.
Vậy x = 1 là nghiệm của bất phương trình.
c. Thay x = 3 và bất phương trình, ta được:
\({3^2} - 4.3 < 3.3 \Leftrightarrow 9 - 12 < 9 \Leftrightarrow - 3 < 9,\) luôn đúng.
Vậy x =3 là nghiệm của bất phương trình.
Hai bất phương trình có cùng một tập nghiệm là hai bất phương trình tương đương.
Ví dụ 2: Viết thành bất phương trình và chỉ ra một nghiệm của nó từ các mệnh đề sau:
a. Tổng của một số nào đó và 4 lớn hơn 9.
b. Hiệu của 8 và 3 lần số nào đó nhỏ hơn 11.
Giải
a. Gọi số cần tìm là x.
Từ giả thiết “Tổng của x và 4 lớn hơn 9”, ta được: x + 4 > 9.
Ta có thể chọn x = 6 là một nghiệm của bất phương trình trên.
b. Gọi số cần tìm là x.
Từ giả thiết “Hiệu của 8 và 3 lần số x nhỏ hơn 11”, ta được: 8 – 3x.
Ta có thể chọn x = 0 là một nghiệm của bất phương trình trên.
Ví dụ 3: Hãy chỉ ra hai nghiệm trái dấu cho các bất phương trình sau:
a. |x -3| < 6
b. |x + 1| \( \ge \) 8
Giải
a. Ta chọn hai nghiệm là x = -1 và x = 6, thật vậy:
* Với x = -1, ta có: |-1 – 3| < 6 \( \Leftrightarrow \) |-4| < 6 \( \Leftrightarrow \)4 < 6, luôn đúng.
* Với x= 6, ta có: |6 – 3| - 6 \( \Leftrightarrow \) |3| < 6 \( \Leftrightarrow \) 3 < 6, luôn đúng.
b. Ta chọn được hai nghiệm là x = -9 và x = 8, thật vậy:
* Với x = -9, ta có: |-9 + 1| \( \ge \) 8 \( \Leftrightarrow \) |-8| \( \ge \) 8 \( \Leftrightarrow \) 8 \( \ge \) 8, luôn đúng.
* Với x = 8, ta có: |8 + 1| \( \ge \) 8 \( \Leftrightarrow \) |9| \( \ge \) 8 \( \Leftrightarrow \) 9 \( \ge \) 8, luôn đúng.
Bài 1: Các cặp bất phương trình sau có tương đương không? Vì sao?
a. x + 1 < 2x và 3x < 4x – 1
b. x > 3 và \({x^2} - 4x + 3 > 0.\)
Giải
a. Với bất phương trình: x + 1 < 2x cộng 2x – 1 vào hai vế của bất phương trình, ta được:
\(x + 1 + 2x - 1 < 2x + 2x - 1 \Leftrightarrow 3x < 4x - 1.\)
Vậy hai phương trình đã cho tương đương.
b. Nhận xét rằng, x = 0 là nghiệm của bất phương trình thứ hai nhưng nghiệm của bất phương trình đầu.
Vậy hai bất phương trình đã cho không tương đương.
Bài 2: Cho bất phương trình: \(10x - 15 \ge {x^2} + 6.\)
Kiểm tra xem các giá trị sau của x có phải là nghiệm của bất phương trình hay không?
a. x = 5.
b. x =-2
c. x =7
Giải
a. x = 5 là nghiệm của bất phương trình
b. x =-2 không là nghiệm của bất phương trình.
c. x =7 là nghiệm của bất phương trình.
Bài 3: Các cặp bất phương trình sau có tương đương không? Vì sao?
a. 2 – x < 0 và x – 2 > 0.
b. |x – 2| < 0 và |2 – x| < 0
Giải
a. Khi nhân hai vế của bất phương trình 2 – x < 0 với -1, ta được: x – 2 > 0 đó chính là bất phương trình còn lại.
Vậy hai bất phương trình là tương đương.
b. Ta luôn có |a| = |-a| nên bất phương trình”
|x – 2| < 0 \( \Leftrightarrow \) |– (x-2)| < 0 \( \Leftrightarrow \) |2 – x| < 0
đó chính là bất phương trình còn lại.
Vậy hai phương trình là tương đương.
Qua bài giảng Bất phương trình một ẩn này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 3 cực hay có đáp án và lời giải chi tiết.
Tìm x biết 2x - 7 > 8 - x
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 3 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 15 trang 43 SGK Toán 8 Tập 2
Bài tập 16 trang 43 SGK Toán 8 Tập 2
Bài tập 17 trang 43 SGK Toán 8 Tập 2
Bài tập 18 trang 43 SGK Toán 8 Tập 2
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK