Bài 4. Cho hình nón \((N)\) sinh bởi tam giác đều cạnh \(a\) khi quay quanh một đường cao của tam giác đó.
a) Một mặt cầu có diện tích bằng diện tích toàn phần của hình nón \((N)\) thì có bán kính bằng bao nhiêu?
b) Một khối cầu có thể tích của khối nón \((N)\) thì có bán kính bằng bao nhiêu?
Hình nón \((N)\) có bán kính đáy \(r = BH = {1 \over 2}a\), chiều cao \(h = AH = {{a\sqrt 3 } \over 2}\) và đường sinh \(l = AB = a\).
Diện tích toàn phần
\({S_{tp}} = {S_{xq}} + {S_d} = \pi rl + \pi {r^2} = \pi {{{a^2}} \over 2} + \pi {{{a^2}} \over 4} = {3 \over 4}\pi {a^2}\)
Thể tích \(V = {1 \over 3}\pi {r^2}h = {1 \over 3}\pi {{{a^2}} \over 4}.{{a\sqrt 3 } \over 2} = {{\sqrt 3 } \over {24}}\pi {a^3}\)
a) Nếu mặt cầu có bán kính \(R\) thì diện tích bằng \(4\pi {R^2}\) nên \(4\pi {R^2} = {3 \over 4}\pi {a^2} \Rightarrow R = {{a\sqrt 3 } \over 4}\)
b) Nếu khối cầu có bán kính \(R\) thì thể tích bằng \({4 \over 3}\pi {R^3}\) nên \({4 \over 3}\pi {R^3} = {{\sqrt 3 } \over {24}}\pi {a^3} \Rightarrow R = {{\root 6 \of {12} } \over 4}a\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK