Bài 3 trang 63 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 3. Cho hai đường tròn \((O; r)\) và \((O’; r’)\) cắt nhau tại hai điểm \(A, B\) và lần lượt nằm trên hai mặt phẳng phân biệt \((P)\) và \((P’)\).

a) Chứng minh rằng có mặt cầu \((S)\) đi qua hai đường tròn đó.

b) Tìm bán kính \(R\) của mặt cầu \((S)\) khi \(r = 5, r' = \sqrt {10} \), \(AB = 6\), \({\rm{OO}}' = \sqrt {21} \).

Hướng dẫn giải



a) Gọi \(M\) là trung điểm của \(AB\) ta có: \(OM \bot AB\) và \(O'M \bot AB \Rightarrow AB \bot \left( {OO'M} \right)\)

Gọi \(\Delta ,\,\Delta '\) lần lượt là trục của đường tròn \((O; r)\) và \((O’; r’)\) thì \(AB \bot \Delta \,\,,\,\,AB \bot \Delta '\). Do đó \(\Delta ,\,\Delta '\) cùng nằm trong mp \((OO’M)\).

Gọi \(I\) là giao điểm của \(\Delta \) và \(\Delta '\) thì \(I\) là tâm của mặt cầu \((S)\) đi qua hai đường tròn \((O; r)\) và \((O’; r’)\) và \(S\) có bán kính \(R = IA\).

b) Ta có: \(MA = MB = 3\,\,,\,\,OA = r = 5,\,\,OA' = r' = \sqrt {10} \)

\(\eqalign{
& OM = \sqrt {O{A^2} - A{M^2}} = \sqrt {25 - 9} = 4 \cr
& O'M = \sqrt {O'{A^2} - A{M^2}} = \sqrt {10 - 9} = 1 \cr} \)

Áp dụng định lí Cosin trong \(\Delta {\rm{OMO'}}\) ta có:

\(\eqalign{
& OO{'^2} = O{M^2} + O'{M^2} - 2OM.O'M.\cos \widehat {OMO'} \cr
& \Rightarrow 21 = 16 + 1 - 2.4.1.cos\widehat {OMO'} \Rightarrow \cos \widehat {OMO'} = - {1 \over 2} \cr
& \Rightarrow \widehat {OMO'} = {120^0},\,\,\widehat {OIO'} = {60^0} \cr} \)

Áp dụng định lí Côsin trong tam giác \(OMO’\) ta có:

\(\eqalign{
& M{O^2} = MO{'^2} + OO{'^2} - 2MO'.OO'.cos\widehat {MO'O} \cr
& \Rightarrow \cos \widehat {MO'O} = {{\sqrt {21} } \over 7} \Rightarrow \sin \widehat {OO'I} = {{\sqrt {21} } \over 7} \cr} \)

(Vì \(\widehat {MO'O} + \widehat {OO'I} = {90^0}\))

Áp dụng định lí Cosin trong tam giác \(OIO’\) ta có:
\({{OI} \over {\sin \widehat {OO'I}}} = {{OO'} \over {\sin \widehat {OIO'}}} \Leftrightarrow {{OI} \over {{{\sqrt {21} } \over 7}}} = {{\sqrt {21} } \over {{{\sqrt 3 } \over 2}}} \Leftrightarrow OI = 2\sqrt 3 \)

Vậy \(R = \sqrt {O{A^2} + O{I^2}}  = \sqrt {25  + 12} = \sqrt {37} \)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK