Bài 3 trang 7 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 3. Chứng minh rằng nếu khối đa diện có các mặt là tam giác và mỗi đỉnh là đỉnh chung của ba cạnh thì đó là khối tứ diện.

Hướng dẫn giải

 

Gọi \(A\) là một đỉnh của khối tứ diện. Theo giả thiết đỉnh \(A\) là đỉnh chung của \(3\) cạnh, ta gọi \(3\) cạnh đó là \(AB, AC, AD\). Cạnh \(AB\) phải là cạnh chung của hai mặt tam giác, đó là hai mặt \(ABC\) và \(ABD\) (Vì qua đỉnh \(A\) chỉ có \(3\) cạnh). Tương tự, ta có các mặt tam giác \(ACD\) và \(BCD\). Vậy khối đa diện đó chính là khối tứ diện \(ABCD\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK