Bài 1 trang 12 SGK Hình học 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Chứng minh rằng một đa diện có các mặt là những tam giác thì tổng số các mặt của nó là một số chẵn. Cho ví dụ.

Hướng dẫn giải

+) Gọi số mặt của đa diện \(H\) là \( m\), tìm số cạnh của đa diện.

+) Số cạnh của đa diện là số nguyên, từ đó suy ra số mặt của đa diện là số chẵn.

+) Lấy ví dụ: Tứ diện.

Lời giải chi tiết

Giả sử đa diện \((H)\) có \(m\) mặt. Vì mỗi mặt của \((H)\) có 3 cạnh, nên \(m\) mặt có \(3m\) cạnh. Nhưng mỗi cạnh của \((H)\) là cạnh chung của đúng hai mặt nên số cạnh của \((H)\) bằng \(c ={{3m} \over 2}\). Do \(c\) là số nguyên dương nên \(m\) phải là số chẵn.

Ví dụ : Số cạnh của tứ diện bằng sáu.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK