Bài 52 Trang 177 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 52. Tính diện tích của các hình phẳng giới hạn bởi:

a) Parabol \(y = {x^2} - 2x + 2,\) tiếp tuyến của nó tại điểm \(M(3;5)\) và trục tung;
b) Parabol \(y =  - {x^2} + 4x - 3\) và các tiếp tuyến của nó tại các điểm \(A(0;-3)\) và \(B(3;0)\)

Hướng dẫn giải

a)

 

Ta có \(y' = 2x - 2 \Rightarrow y'\left( 3 \right) = 4.\)
Phương trình tiếp tuyến với parabol tại M(3;5) là:
\(y - 5 = 4\left( {x - 3} \right) \Leftrightarrow y = 4x - 7\)
Gọi S là diện tích cần tìm, ta có :

\(\eqalign{
& S = \int\limits_0^3 {\left( {{x^2} - 2x + 2 - 4x + 7} \right)} dx \cr
& \,\,\, = \int\limits_0^3 {\left( {{x^2} - 6x + 9} \right)} dx = \int\limits_0^3 {{{\left( {x - 3} \right)}^2}dx} \cr
& \,\,\, = \left. {{1 \over 3}{{\left( {x - 3} \right)}^3}} \right|_0^3 = 9. \cr} \)

b)

Ta có \(y' =  - 2x + 4 \Rightarrow y'\left( 0 \right) = 4;y'\left( 3 \right) =  - 2\)
Phương trình tiếp tuyến tại \(A(0;3)\) là :
\(y + 3 = 4\left( {x - 0} \right) \Leftrightarrow y = 4x - 3\)
Phương trình tiếp tuyến tại \(B(3;0)\) là :
\(y =  - 2\left( {x - 3} \right) \Leftrightarrow y =  - 2x + 6\)
Giao điểm của hai tiếp tuyến là \(C\left( {{3 \over 2};3} \right).\) kí hiệu \({A_1}\) và \({A_2}\) là tam giác cong \(ACD\) Và \(BCD\). Ta có :

\(S\left( {{A_1}} \right) = \int\limits_0^{{3 \over 2}} {\left( {4x - 3 + {x^2} - 4x + 3} \right)} dx = \int\limits_0^{{3 \over 2}} {{x^2}dx = \left. {{{{x^3}} \over 3}} \right|_0^{{3 \over 2}}}  = {9 \over 8}\)

\(S\left( {{A_2}} \right) = \int\limits_{{3 \over 2}}^3 {\left( { - 2x + 6 + {x^2} - 4x + 3} \right)} dx = \int\limits_{{3 \over 2}}^3 {{{\left( {x - 3} \right)}^2}dx = } \left. {{1 \over 3}{{\left( {x - 3} \right)}^3}} \right|_{{3 \over 2}}^3 = {9 \over 8}\)

Vậy \(S = S\left( {{A_1}} \right) + S\left( {{A_2}} \right) = {9 \over 8} + {9 \over 8} = {9 \over 4}\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK