Bài 60
a) Chứng minh rằng đồ thị của hai hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\) đối xứng với nhau qua trục tung.
b) Chứng minh rằng đồ thị của hai hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\) đối xứng với nhau qua trục hoành.
a) Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị củ hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\), \(M\left( {{x_o},{y_o}} \right)\) là một điểm bất kì. Khi đó điểm đối xứng với M qua trục tung là \(M'\left( { - {x_o},{y_o}} \right)\).
Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {a^{{x_o}}} \Leftrightarrow {y_o}={\left( {{1 \over a}} \right)^{ - {x_o}}} \Leftrightarrow M' \in \left( {{G_2}} \right)\)
Điều đó chứng tỏ \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục tung.
b) Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị củ hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\)
Lấy \(M\left( {{x_o},{y_o}} \right)\) tùy ý. Điểm đối xứng với M qua trục hoành là \(M'\left( {{x_o}, - {y_o}} \right)\).
Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {\log _a}{x_o} = - {\log _{{1 \over a}}}{x_o} \Leftrightarrow - {y_o} = {\log _{{1 \over a}}}{x_o} \Leftrightarrow M' \in \left( {{G_2}} \right)\)
Vậy \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục hoành.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK