Bài 57 sách giải tích 12 nâng cao trang 117

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 57. Trên hình bên cho hai đường cong (\({C_1}\)) (đường nét liền) và (\({C_2}\)) (đường nét đứt) được vẽ trên cùng một mặt phẳng tọa độ. Biết rằng mỗi đường cong ấy là đồ thị của ột trong hai hàm số lũy thừa \(y = {x^{ - 2}}\) và \(y = {x^{ - {1 \over 2}}}\,\,\left( {x > 0} \right)\). Chỉ dựa vào tính chất của lũy thừa, có thể nhận biết đường cong nào là đồ thị của hàm số nào được không?
Hãy nêu rõ lập luận.

Hướng dẫn giải

Giả sử (\({C_1}\)) và (\({C_2}\)) theo thứ tự là đồ thị của hàm số \(y = {x^\alpha }\) và \(y = {x^\beta }\) ( \(\alpha \) và \(\beta \) là -2 hoặc \( - {1 \over 2}\)). Trên đồ thị, ta thấy trên khoảng \(\left( {1; + \infty } \right)\), đường cong (\({C_2}\))nằm trên đường cong (\({C_1}\)), nghĩa là khi x > 1 ta có bất đẳng thức \({x^\beta } > {x^\alpha }\). Vậy \(\beta  =  - {1 \over 2}\) và \(\alpha  =  - 2\).
Vậy đường (\({C_1}\)) là đồ thị của hàm số \(y = {x^{ - 2}}\), (\({C_2}\)) là đồ thị hàm số \(y = {x^{ - {1 \over 2}}}\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK