Bài 1 trang 7 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 1. Xét chiều biến thiên của các hàm số sau:

a) \(y = 2{x^3} + 3{x^2} + 1\)        b) \(y = {x^3} - 2{x^2} + x + 1\)

c) \(y = x + {3 \over x}\)                      d) \(y = x - {2 \over x}\)

e) \(y = {x^4} - 2{x^2} - 5\)          f) \(y = \sqrt {4 - {x^2}} \)

Hướng dẫn giải

a) Tập xác định: \(D =\mathbb R\)

\(\eqalign{
& y' = 6{x^2} + 6x \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0\,\,\left( {y = 1} \right) \hfill \cr
x = - 1\,\,\left( {y = 2} \right) \hfill \cr} \right. \cr} \)

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0; + \infty } \right)\) nghịch biến trên khoảng \(\left( { - 1;0} \right)\).

b) Tập xác định: \(D =\mathbb R\)

\(\eqalign{
& y' = 3{x^2} - 4x + 1 \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 1\,\,\left( {y = 1} \right) \hfill \cr
x = {1 \over 3}\,\,\left( {y = {{31} \over {27}}} \right) \hfill \cr} \right. \cr} \)

Bảng biến thiên

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;{1 \over 3}} \right)\) và \(\,\left( {1; + \infty } \right)\) , nghịch biến trên khoảng \(\,\left( {{1 \over 3};1} \right)\).

c) Tập xác định: \(D =\mathbb R\backslash \left\{ 0 \right\}\)

\(\eqalign{
& y' = 1 - {3 \over {{x^2}}} = {{{x^2} - 3} \over {{x^2}}} \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = \sqrt 3 \,\,\left( {y = 2\sqrt 3 } \right) \hfill \cr
x = - \sqrt 3 \,\,\left( {y = - 2\sqrt 3 } \right) \hfill \cr} \right. \cr} \)

Bảng biến thiên

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - \sqrt 3 } \right)\) và \(\,\left( {\sqrt 3 ; + \infty } \right)\) , nghịch biến trên khoảng \(\left( { - \sqrt 3 ;0} \right)\) và \(\,\left( {0;\sqrt 3 } \right)\).

d) Tập xác định: \(D = \mathbb R\backslash \left\{ 0 \right\}\)

\(y' = 1 + {2 \over {{x^2}}} > 0\) với mọi \(x \ne 0\)

Hàm số đồng biến trên mỗi khoảng \(\,\,\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

e) Tập xác định: \(D= \mathbb R\)

\(y' = 4{x^3} - 4x = 4x\left( {{x^2} - 1} \right);y' = 0 \)

\( \Leftrightarrow \,\left[ \matrix{
x = 0\,\,\,\,\left( {y = - 5} \right) \hfill \cr
x = \pm 1\,\,\,\,\left( {y = - 6} \right) \hfill \cr} \right.\)

Bảng biến thiên

Hàm số đồng biến trên mỗi khoảng \(\,\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\), đồng biến trên mỗi khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).

f) Hàm số xác định khi và chỉ khi \(4 - {x^2} \ge 0 \Leftrightarrow  - 2 \le x \le 2\)

Tập xác định: \(D = \left[ { - 2;2} \right]\)

\(y' = {{ - 2x} \over {2\sqrt {4 - {x^2}} }} = {{ - x} \over {\sqrt {4 - {x^2}} }};y' = 0 \Leftrightarrow \)\(x = 0\,\,\,\left( {y = 2} \right)\)

Bảng biến thiên

Hàm số đồng biến trên khoảng \(\left( { - 2;0} \right)\) và nghịch biến trên khoảng \(\left( {0;2} \right)\) .

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK