Trong không gian \(Oxyz\) cho các điểm \(A(1; 0 ; -1), B(3 ; 4 ; -2), C(4 ; -1; 1), D(3 ; 0 ;3)\).
a) Chứng minh rằng \(A, B, C, D\) không đồng phẳng.
b) Viết phương trình mặt phẳng \((ABC)\) và tính khoảng cách từ \(D\) đến \((ABC)\).
c) Viết phương trình mặt cầu ngoại tiếp tứ diện \(ABCD\).
d) Tính thể tích tứ diện \(ABCD\).
a) Viết phương trình mặt phẳng (ABC) và chứng minh \(D \notin \left( {ABC} \right)\).
b) Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.
Khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\,\,\left( {{A^2} + {B^2} + {C^2} > 0} \right)\) là: \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)
c) Gọi phương trình tổng quát của mặt cầu là \({x^2} + {y^2} + {z^2} + 2Ax + 2By + 2Cz + D = 0\).
Thay tọa độ các điểm A, B, C, D vào phương trình mặt cầu trên, suy ra được hệ 4 phương trình 4 ẩn A, B, C, D. Giải hệ phương trình sau đó suy ra phương trình mặt cầu.
d) \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)
Lời giải chi tiết
a) Ta có \(\overrightarrow {AB} = (2; 4; -1)\), \(\overrightarrow {AC} = (3; -1; 2)\)
Ta có: \( \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = (7; -7; -14)=7(1;-1;-2)\)
Gọi \(\overrightarrow n \) là vectơ pháp tuyến của mặt phẳng \((ABC)\) \( \Rightarrow \overrightarrow n = \left( {1; - 1; - 2} \right)\)
Khi đó phương trình mp \((ABC)\): \((x - 1) - (y - 0) -2(z + 1) = 0 \)
\(\Leftrightarrow x - y - 2z - 3 = 0\).
Thay tọa độ điểm D vào phương trình mặt phẳng (ABC) ta có: \(3 - 0 - 2.3 - 3 = - 6 \ne 0 \Rightarrow D \notin \left( {ABC} \right)\).
Vậy \(A, B, C, D\) không đồng phẳng.
b) \(d(D, (ABC))\) =\({{\left| {1.3 - 0 - 2.3 - 3} \right|} \over {\sqrt {{1^2} + {1^2} + {{( - 2)}^2}} }} = {6 \over {\sqrt 6 }} = \sqrt 6 \)
c) Phương trình tổng quát của mặt cầu:
\({x^2} + {y^2} + {z^2} + 2Ax + 2By + 2Cz + D = 0\)
Mặt cầu đi qua \(A(1; 0; -1)\) ta có:
\({1^2} + {0^2} + {( - 1)^2} + 2A - 2C + D = 0 \)
\(\Leftrightarrow 2A - 2C + D + 2 = 0 \)(1)
Tương tự, mặt cầu đi qua \(B, C, D\) cho ta các phương trình:
\(6A + 8B - 4C + D + 29 = 0 \) (2)
\(8A - 2B + 2C + D + 18 = 0 \) (3)
\(6A + 6C + D + 18 = 0 \) (4)
Hệ bốn phương trình (1), (2), (3), (4) cho ta: \(A = -3; B =- 2; C = {-1 \over 2}; D = 3\).
Vậy hương trình mặt cầu đi qua bốn điểm \(A, B, C, D\) là: \({x^2} + {y^2} + {z^2} -6 x - 4y - z +3 = 0\)
d) Ta có: \(\overrightarrow {AD} = \left( {2;0;4} \right)\)
\(\Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD} = 7.2 - 7.0 - 14.4 = - 42\)
Vậy \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \frac{1}{6}.42 = 7\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK