a) Phát biểu định nghĩa tích phân của hàm số \(f(x)\) trên một đoạn
b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.
a) Cho hàm số \(f(x)\) liên tục trên \([a, b]\).
Giả sử \(F(x)\) là một nguyên hàm của \(f(x)\) trên \([a, b]\).
Hiệu số \(F(b) – F(a)\) được gọi là tích phân từ \(a\) đến \(b\) (hay tích phân xác định trên đoạn \([a, b]\) của hàm số \(f(x)\).
Kí hiệu \(\int_a^b {f(x)dx} \): hoặc
Dấu \({\rm{[F(x)]}}{\left| {^b} \right._a} = F(b) – F(a) (1)\). (Công thức Newton – Leibniz)
Dấu được gọi là dấu tích phân, \(a\) là cận dưới và \(b\) là cận trên của tích phân
Hàm số \(f(x)\) gọi là hàm số dưới dấu tích phân,\( f(x) dx\) là biểu thức dưới dấu tích phân, \(dx\) chỉ biến số lấy tích phân là \(x\).
b) Tính chất 1: \(\int_a^b {k.f(x)dx = k\int_a^b {f(x)dx} } \) ( \(k\) là hằng số)
Tính chất 2: \(\int_a^b {{\rm{[f(x)}} \pm {\rm{g(x)]dx}} = \int_a^b {f(x)dx \pm } } \int_a^b {g(x)dx} \)
Tính chất 3: \(\int_a^b {f(x)dx = \int_a^c {f(x)dx + \int_c^b {f(x)dx} } } \) \((a < c < b).\)
Ví dụ:
a) Biết \(\int_5^9 {f(x)dx = 2.} \) Hãy tính \(\int_5^9 {( - 5).f(x)dx}. \)
b) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_5^9 {g(x)dx = 4} .\) Hãy tính \(\int_5^0 {{\rm{[f(x) + g(x)]dx}}}. \)
c) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_9^{10} {f(x)dx = 3} .\) Hãy tính \(\int_5^{10} {f(x)dx}. \)
Giải
a) Ta có: \(\int_5^9 {( - 5).f(x)dx = ( - 5)\int_5^9 {f(x)dx = ( - 5).2 = - 10} }. \)
b) Ta có: \(\int_5^9 {{\rm{[f(x) + g(x)]dx}} = \int_5^9 {f(x)dx + \int_5^9 {g(x)dx = 2 + 4 = 6} } } .\)
c) Ta có: \(\int_5^{10} {f(x)dx = \int_5^9 {f(x)dx + \int_9^{10} {f(x)dx = 2 + 3 = 5} } }. \)
Tham khảo : Công thức toán Casio
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK