Bài 3 trang 121 SGK Giải tích 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Parabol \(y = {{{x^2}} \over 2}\) chia hình tròn có tâm tại gốc tọa độ, bán kính \(2\sqrt2\) thành hai phần. Tìm tỉ số diện tích của chúng.

Hướng dẫn giải

+) Xác định các phần của đường tròn được chia bởi parabol (P).

+) Sử dụng công thức tính diện tích hình phẳng để tính diện tích hai phần được chia sau đó tính tỉ số của hai phần diện tích.

Lời giải chi tiết

Đường tròn đã cho có phương trình: \({x^{2}} + {\rm{ }}{y^2} = {\rm{ }}8.\)

Từ đó ta có: \(y =  \pm \sqrt {8 + {x^2}} \)

Tọa độ giao điểm của \((C)\) và \((P)\) là nghiệm của hệ phương trình: 

\(\left\{ \matrix{
{x^2} = 2y \hfill \cr
{x^2} + {y^2} = 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{y^2} + 2y - 8 = 0 \hfill \cr
{x^2} = 2y \hfill \cr} \right.\)

\( \Leftrightarrow \left\{ \matrix{ \left[ \begin{array}{l} y = 2\;\;\left( {tm} \right)\\y = - 4\;\;\left( {ktm} \right)\end{array} \right. \hfill \cr x^2=2y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{y = 2 \hfill \cr x = \pm 2 \hfill \cr} \right.\)

Gọi \(S_1\) và \(S_2\) là diện tích hai phần của đường tròn được chia bởi parabol \((P)\) như hình vẽ.

Khi đó ta có:

\(S_1 = 2\int_0^2 {\left( {\sqrt {8 - {x^2}}  - {{{x^2}} \over 2}} \right)} d{\rm{x}}\)

\(= 2\int\limits_0^2 {\sqrt {8 - {x^2}} dx - \left[ {{{{x^3}} \over 3}} \right]} \left| {_0^2 = 2\int\limits_0^2 {\sqrt {8 - {x^2}} } dx - {8 \over 3}} \right.\)

Đặt \(x = 2\sqrt 2 \sin t \Rightarrow dx = 2\sqrt 2 {\mathop{\rm costdt}\nolimits} \)

Đổi cận: \(\eqalign{
& x = 0 \Rightarrow t = 0 \cr
& x = 2 \Rightarrow t = {\pi \over 4} \cr} \)

\({S_1} = 2\int\limits_0^{{\pi  \over 4}} {\sqrt {8 - 8{{\sin }^2}t} .2\sqrt 2 {\rm{costdt - }}{8 \over 3}} \)

\( = 16\int\limits_0^{{\pi  \over 4}} {{{\cos }^2}tdt - {8 \over 3}} \)\( = 8\int\limits_0^{{\pi  \over 4}} {(1 + cos2t)dt - {8 \over 3}} \)

\(= [8t + 4sint2t]|_0^{{\pi  \over 4}} - {8 \over 3} = 2\pi  + {4 \over 3}\)

Diện tích hình tròn là: \(\pi R^2=8\pi\)

và  \({S_2} = 8\pi  - {S_1}= 8\pi-2\pi  - {4 \over 3}=6\pi-{4\over 3}.\)

Vậy  \({{{S_2}} \over {{S_1}}} = {{9\pi  - 2} \over {3\pi  + 2}}\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK